CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation/Verification
  1. Labs
  2. BGP Multi-Homing (XE)

Lab9 MPLS + RDs + UCMP

PreviousLab8 MPLS + Shadow RRNextBGP Multi-Homing (XR)

Last updated 3 months ago

Load unix:lab9.init.cfg. You may need to replace with unix:blank.cfg first.

configure replace unix:lab9.init.cfg

R7 is the only RR, and it is reflecting VPNv4 and VPN6 routes. The iBGP sessions have already been established.

  • On the PEs, place the customer in a VRF called CUST_A and exchange IPv4 and IPv6 routes.

    • The VRF has not been configured yet.

  • Configure dmz-linkbw so that R2 will forward traffic to R6 in a 2:1 ratio to R4/R5.

Answer

#R2
vrf def CUST_A
 rd 65000:2
 route-target both 65000:200
 add ipv4
 add ipv6
!
interface Ethernet0/1
 vrf forwarding CUST_A
 ip address 10.1.2.2 255.255.255.0
 ipv6 address FE80::2 link-local
 ipv6 address FC00:10:1:2::2/64
!
router bgp 65000
 add vpnv4
  bgp dmzlink-bw
 add vpnv6
  bgp dmzlink-bw
 add ipv4 vrf CUST_A
  neighbor 10.1.2.1 remote-as 65001
  maximum-paths ibgp 2
 add ipv6 vrf CUST_A
  neighbor FC00:10:1:2::1 remote-as 65001
  maximum-paths ibgp 2

#R4
vrf def CUST_A
 rd 65000:4
 route-target both 65000:200
 add ipv4
 add ipv6
!
interface Ethernet0/2
 vrf forwarding CUST_A
 ip address 10.4.6.4 255.255.255.0
 ipv6 address FE80::4 link-local
 ipv6 address FC00:10:4:6::4/64
!
router bgp 65000
 !
 add vpnv4
  bgp dmzlink-bw
 add vpnv6
  bgp dmzlink-bw
 add ipv4 vrf CUST_A
  neighbor 10.4.6.6 remote-as 65006
  neighbor 10.4.6.6 dmzlink-bw
 add ipv6 vrf CUST_A
  neighbor FC00:10:4:6::6 remote-as 65006
  neighbor FC00:10:4:6::6 dmzlink-bw

#R5
vrf def CUST_A
 rd 65000:5
 route-target both 65000:200
 add ipv4
 add ipv6
!
interface Ethernet0/1
 vrf forwarding CUST_A
 ip address 10.5.6.5 255.255.255.0
 ipv6 address FE80::5 link-local
 ipv6 address FC00:10:5:6::5/64
!
router bgp 65000
 !
 add vpnv4
  bgp dmzlink-bw
 add vpnv6
  bgp dmzlink-bw
 add ipv4 vrf CUST_A
  neighbor 10.5.6.6 remote-as 65006
  neighbor 10.5.6.6 dmzlink-bw
 add ipv6 vrf CUST_A
  neighbor FC00:10:5:6::6 remote-as 65006
  neighbor FC00:10:5:6::6 dmzlink-bw

Explanation/Verification

This lab uses VPNv4 and VPN6 for the first time in this topology. The VRF configuration is straightforward. The PEs must each use a unique RD, because we are not using add path. Without this, R7 will pick the best path for all routes with the same RD. R7 would end up reflecting only the path via R4 to R2.

The BGP configuration uses VPNv4 and VPNv6 for iBGP RR. All routers activate bgp dmzlink-bw for these address families.

On R4 and R5, we specify the R6 neighbor with dmzlink-bw to add the dmz link-bw extcommunity to routes learned from this peer.

#R4
router bgp 65000
 add ipv4 vrf CUST_A
  neighbor 10.4.6.6 dmzlink-bw
 add ipv6 vrf CUST_A
  neighbor FC00:10:4:6::6 dmzlink-bw

#R5
router bgp 65000
 add ipv4 vrf CUST_A
  neighbor 10.5.6.6 dmzlink-bw
 add ipv6 vrf CUST_A
  neighbor FC00:10:5:6::6 dmzlink-bw

On R7, we can see both routes are learned and both are choosen as a best path. This is because we are using unique RDs per-PE. This is an easy way to achieve additional path functionality in a VPN environment.

Thanks to the unique RDs, R2 receives both paths. R2 also configures mulitpath for iBGP routes under the customer VRF in BGP. This allows R2 to do UCMP for this VPN.

#R2
router bgp 65000
 add vpnv4
  bgp dmzlink-bw
 add vpnv6
  bgp dmzlink-bw
 add ipv4 vrf CUST_A
  maximum-paths ibgp 2
 add ipv6 vrf CUST_A
  maximum-paths ibgp 2

We can see the traffic share count is 2:1 for IPv4 traffic:

The hash buckets in the CEF internal output give us another way to verify the 2:1 share ratio.

R2#show ip cef vrf CUST_A 192.0.2.6 internal
192.0.2.6/32, epoch 0, flags [rlbls], RIB[B], refcnt 5, per-destination sharing
  sources: RIB
  feature space:
    IPRM: 0x00018000
    LFD: 192.0.2.6/32 0 local labels
        contains path extension list
  ifnums: (none)
  path list C77F1D34, 3 locks, per-destination, flags 0x249 [shble, rif, hwcn, bgp]
    path C77D7EAC, share 1/1, type recursive, for IPv4, flags [must-be-lbld]
      MPLS short path extensions: [rib] MOI flags = 0x0 label 5013
      recursive via 10.0.0.5[IPv4:Default] label 5013, fib C7902ED4, 1 terminal fib, v4:Default:10.0.0.5/32
      path list C77F1E24, 17 locks, per-destination, flags 0x4D [shble, hvsh, rif, hwcn]
          path C77D7E40, share 1/1, type attached nexthop, for IPv4
            MPLS short path extensions: [none] MOI flags = 0x0 label 3002
            nexthop 10.2.3.3 Ethernet0/1 label 3002-(local:2002), IP adj out of Ethernet0/1, addr 10.2.3.3 C5792B90
    path C77D7A74, share 2/2, type recursive, for IPv4, flags [must-be-lbld]
      MPLS short path extensions: [rib] MOI flags = 0x0 label 4012
      recursive via 10.0.0.4[IPv4:Default] label 4012, fib C7724AB4, 1 terminal fib, v4:Default:10.0.0.4/32
      path list C77F1E24, 17 locks, per-destination, flags 0x4D [shble, hvsh, rif, hwcn]
          path C77D7E40, share 1/1, type attached nexthop, for IPv4
            MPLS short path extensions: [none] MOI flags = 0x0 label 3001
            nexthop 10.2.3.3 Ethernet0/1 label 3001-(local:2001), IP adj out of Ethernet0/1, addr 10.2.3.3 C5792B90
  output chain:
    loadinfo C4AF1488, per-session, 2 choices, flags 0003, 4 locks
      flags [Per-session, for-rx-IPv4]
      15 hash buckets
        < 0 > label 5013
              label 3002-(local:2002)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        < 1 > label 4012
              label 3001-(local:2001)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        < 2 > label 5013
              label 3002-(local:2002)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        < 3 > label 4012
              label 3001-(local:2001)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        < 4 > label 5013
              label 3002-(local:2002)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        < 5 > label 4012
              label 3001-(local:2001)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        < 6 > label 5013
              label 3002-(local:2002)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        < 7 > label 4012
              label 3001-(local:2001)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        < 8 > label 5013
              label 3002-(local:2002)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        < 9 > label 4012
              label 3001-(local:2001)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        <10 > label 4012
              label 3001-(local:2001)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        <11 > label 4012
              label 3001-(local:2001)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        <12 > label 4012
              label 3001-(local:2001)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        <13 > label 4012
              label 3001-(local:2001)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60
        <14 > label 4012
              label 3001-(local:2001)
              TAG adj out of Ethernet0/1, addr 10.2.3.3 C5792A60

As in lab2, DMZ Link-BW does not work for IPv6, so we can skip the verification.

https://www.youtube.com/watch?v=Er2fq1yL0rc&list=PL3Y9eZjZCcsejbVWD3wJIePqe3NiImqxB&index=12