CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Prefix SID
  • Router Capabilities
  • Adj-SID
  1. Labs
  2. SR

Basic SR with ISIS

Load blank.cfg

configure
load bootflash:blank.cfg
commit replace
y
  • Configure ISIS in the core

  • Use a metric of 50 for dashed links and a metric of 10 for solid links

  • Using SR, configure a prefix SID for each router’s Lo1 using the router number as the index

  • Configure ISIS using a group

  • All nodes should be L2-only and belong to the same area

  • Only advertise the loopback prefix in ISIS

  • All Gig interfaces should be point-to-point

Answer

#R1-R10
group ISIS
 router isis '1'
  is-type level-2-only
  add ipv4
   metric-style wide
   advertise passive-only
   segment-routing mpls
  int 'Lo.*'
   add ipv4 
   passive
  !
  int 'GigabitEthernet.*'
   point-to-point
   add ipv4

#R1
router isis 1
 apply-group ISIS
 net 49.0001.0000.0000.0001.00
 interface Loopback1
  address-family ipv4 unicast
   prefix-sid index 1
  !
 !
 interface GigabitEthernet0/0/0/3
 !
 interface GigabitEthernet0/0/0/4
  address-family ipv4 unicast
   metric 50

#R2
router isis 1
 apply-group ISIS
 net 49.0001.0000.0000.0002.00
 interface Loopback1
  address-family ipv4 unicast
   prefix-sid index 2
  !
 !
 interface GigabitEthernet0/0/0/3
  address-family ipv4 unicast
   metric 50
  !
 !
 interface GigabitEthernet0/0/0/4

#R3
router isis 1
 apply-group ISIS
 net 49.0001.0000.0000.0003.00
 interface Loopback1
  address-family ipv4 unicast
   prefix-sid index 3
  !
 !
 interface GigabitEthernet0/0/0/1
 !
 interface GigabitEthernet0/0/0/2
  address-family ipv4 unicast
   metric 50
  !
 !
 interface GigabitEthernet0/0/0/4
  address-family ipv4 unicast
   metric 50
  !
 !
 interface GigabitEthernet0/0/0/5
 !
 interface GigabitEthernet0/0/0/6
 !
 interface GigabitEthernet0/0/0/9

#R4
router isis 1
 apply-group ISIS
 net 49.0001.0000.0000.0004.00
 interface Loopback1
  address-family ipv4 unicast
   prefix-sid index 4
  !
 !
 interface GigabitEthernet0/0/0/1
  address-family ipv4 unicast
   metric 50
  !
 !
 interface GigabitEthernet0/0/0/2
 !
 interface GigabitEthernet0/0/0/3
  address-family ipv4 unicast
   metric 50
  !
 !
 interface GigabitEthernet0/0/0/5
 !
 interface GigabitEthernet0/0/0/6
 !
 interface GigabitEthernet0/0/0/10

#R5
router isis 1
 apply-group ISIS
 net 49.0001.0000.0000.0005.00
 interface Loopback1
  address-family ipv4 unicast
   prefix-sid index 5
  !
 !
 interface GigabitEthernet0/0/0/3
 !
 interface GigabitEthernet0/0/0/4
 !
 interface GigabitEthernet0/0/0/6
  address-family ipv4 unicast
   metric 50
  !
 !
 interface GigabitEthernet0/0/0/7
 !
 interface GigabitEthernet0/0/0/8
  address-family ipv4 unicast
   metric 50
  !
 !
 interface GigabitEthernet0/0/0/9

#R6
router isis 1
 apply-group ISIS
 net 49.0001.0000.0000.0006.00
 interface Loopback1
  address-family ipv4 unicast
   prefix-sid index 6
  !
 !
 interface GigabitEthernet0/0/0/3
 !
 interface GigabitEthernet0/0/0/4
 !
 interface GigabitEthernet0/0/0/5
  address-family ipv4 unicast
   metric 50
  !
 !
 interface GigabitEthernet0/0/0/7
  address-family ipv4 unicast
   metric 50
  !
 !
 interface GigabitEthernet0/0/0/8
 !
 interface GigabitEthernet0/0/0/10

#R7
router isis 1
 apply-group ISIS
 net 49.0001.0000.0000.0007.00
 interface Loopback1
  address-family ipv4 unicast
   prefix-sid index 7
  !
 !
 interface GigabitEthernet0/0/0/5
 !
 interface GigabitEthernet0/0/0/6
  address-family ipv4 unicast
   metric 50

#R8
router isis 1
 apply-group ISIS
 net 49.0001.0000.0000.0008.00
 interface Loopback1
  address-family ipv4 unicast
   prefix-sid index 8
  !
 !
 interface GigabitEthernet0/0/0/5
  address-family ipv4 unicast
   metric 50
  !
 !
 interface GigabitEthernet0/0/0/6

#R9
router isis 1
 apply-group ISIS
 net 49.0001.0000.0000.0009.00
 interface Loopback1
  address-family ipv4 unicast
   prefix-sid index 9
  !
 !
 interface GigabitEthernet0/0/0/3
 !
 interface GigabitEthernet0/0/0/5

#R10
router isis 1
 apply-group ISIS
 net 49.0001.0000.0000.000a.00
 interface Loopback1
  address-family ipv4 unicast
   prefix-sid index 10
  !
 !
 interface GigabitEthernet0/0/0/4
 !
 interface GigabitEthernet0/0/0/6

Explanation

SR provides many benefits over LDP and RSVP-TE. First, SR is not a separate protocol. It simply advertises its information within the IGP. This removes the need for synchronization between the IGP and label protocol, as we use with LDP/IGP sync.

Second, SR provides robust TE capabilities. RSVP-TE has many drawbacks. It is not scalable due to soft state refresh and full mesh requirement. It also cannot follow ECMP paths. Additionally, FRR using RSVP-TE adds even more state into the network. SR can achieve source-node-specified TE paths by simply programing a list of SIDs as an MPLS label stack. This requires no soft state in the network. All nodes within an IGP area know of all prefix SIDs and adjacency SIDs, allowing a node to easily program any arbitrary LSP. Additionally, this allows SR to provide TI-LFA, which negates the need for FRR using RSVP-TE. Also, SR-TE paths are naturally ECMP-aware when using prefix SIDs.

SR is enabled for ISIS with two simple commands: enabling SR for the process, and configuring the loopback prefix SID. The prefix SID of all nodes is installed as a local LFIB entry using a label of <global base> + <prefix SID index #>. The default global base is 16000-23999. You can specify the loopback prefix SID as the index value, or the absolute value (i.e. 16001). If using the absolute value, it is converted into the index value in the IGP advertisement. However, note that it can be dangerous to configure an absolute value. If the absolute value ends up later falling out of the SRGB (because you manually change the SRGB), the prefix SID can no longer be advertised.

#IOS-XR
router isis 1
 add ipv4 uni
  segment-routing mpls
 int Lo1
  add ipv4 uni
   prefix-sid index 1

Let’s explore the information that has been added to R1’s ISIS LSP:

Prefix SID

First we see the prefix SID index, and the loopback prefix it corresponds to. This prefix SID is a node SID, so the N flag is set. (It represents the node itself). Here is the meaning of the other flags:

  • R = Re-advertisement. Set only if the prefix has been propagated from another level.

  • N = Node SID. Set if the prefix represents the node.

  • P = PHP-Off. Set if the router is requesting directly connected neighbors not to perform PHP.

  • E = Explicit-Null. Set if the router is requesting Exp Null. PHP-Off must also be set when this is set.

  • V = Value. Set if the prefix SID has a label value instead of an index. You should never see this for a prefix SID.

  • L = Local. Set if the prefix SID only has local significance. You should never see this for a prefix SID, as a prefix SID is always global.

The Prefix SID is advertised in a Prefix SID sub TLV attached to the Extended IP Reachability TLV (135). See an example pcap below:

Router Capabilities

Next we see the SR information about the node itself in a Router Capabilities TLV. The router capability RID comes from the following order:

  • MPLS TE RID

    • This requires MPLS-TE to be activated for the IGP and globally on the router to take affect

  • ISIS RID

    • This provides similar functionality of setting the MPLS TE RID but without needing to enable MPLS-TE

    • A prefix SID must be configured on the loopback used for the RID for this to take affect

  • lowest numbered Loopback (ie Lo0 instead of Lo1)

  • lowest numbered physical interface

In the Router Capabilities TLV we have three new sub TLVs:

  • SR Capability sub TLV

    • Contains SRGB base value and range

    • Contains two flags:

      • I = MPLS IPv4 support

      • V = MPLS IPv6 support

  • SR Algorithms sub TLV

    • Contains the algorithms supported

  • Node max SID depth sub TLV

    • The XRv supports a max SID depth of 10

    • This allows other routers in the IGP to know how many labels this router can process on a stack

The high-level Router Capabilities TLV itself also has two flags:

  • S = Scope flag, it is set when the TLV should be flooded across the entire domain

    • Not used in the current implementation, so this sub TLV is not advertised across level boundaries

  • D = Down flag, it is set when the router capability TLV is leaked from L2 to L1

    • If this flag is set, then the TLV is not propagated from L1 back to L2

    • Not used in the current implementation, because the Scope flag is never set, so this TLV is never leaked from L2 to L1

Here is an example pcap of the router capabilities TLV:

The SR algorithms supported requires further explanation. By default, both algo 0 and aglo 1 are supported. All prefix-SIDs are advertised with algo 0 by default. Algo 0 is “SPF-only” and algo 1 is “strict SPF.” With algo 1, the path must always follow the IGP shortest path. With algo 0, the shortest path is used but it allows any nodes along the path to alter the path based on local policy. For example, if a node in the middle has a TE tunnel to the destination using autoroute announce, this node is allowed to forward over the TE tunnel with algo 0. However, with algo 1, this node must forward along the IGP path. (As a note, a prefix can have multiple algorithms associated with it, but it must have one unqiue Prefix-SID per algorithm. So you can advertise multiple prefix SIDs per loopback. For example, index=1/algo=0 and index=100/algo=1).

Adj-SID

Lastly we see that each adjacency has an adjacency SID. Currently we are not using TI-LFA, so we only see an unprotected SID. The SID is a local segment which means “pop the label and forward out the IGP link.” We can verify the adjacency SIDs for an interface using the following command. Currently only the non-FRR SID is advertised into ISIS:

Once all routers advertise their prefix SIDs, we should see the same SR table on each node, as each node is using the default SRGB:

Note that on IOS-XR there is no need to enable “mpls ldp” as we have to when using only RSVP-TE. (It is necessary to enable LFIB functionality on XRv). The LFIB is built on each router automatically, and each IGP interface has MPLS enabled. (Note below, that there is no “SR” column, so by process of elimination we can assume SR is running).

The RIB route for a prefix-SID prefix shows via “labeled SR”:

The CEF table will show the outgoing label:

If we traceroute to this address, we should see each node along the path swaps 16008 for 16008.

PreviousTopologyNextBasic SR with OSPF

Last updated 4 months ago