CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Type 1 (TE Information)
  • Type 4 (Router Information)
  • Type 7 (Extended Prefix)
  • Type 8 (Extended Link)
  • Other notes
  • Differences between OSPF and ISIS
  1. Labs
  2. SR

Basic SR with OSPF

Load blank.cfg

configure
load bootflash:blank.cfg
commit replace
y
  • Configure OSPF in the core

  • Use a metric of 50 for dashed links and a metric of 10 for solid links

  • Using SR, configure a prefix SID for each router’s Lo1 using the router number as the index

  • Configure OSPF using a group

  • All links should belong to area 0

  • Only advertise the loopback prefix in OSPF

  • All Gig interfaces should be point-to-point

Answer

#R1-R10
group OSPF
 router ospf '1'
  prefix-suppression
  segment-routing mpls
  area '0'
   int 'Lo.*'
    passive
  !
   int 'GigabitEthernet.*'
    network point-to-point
end-group

#R1
router ospf 1
 apply-group OSPF
 area 0
  interface Loopback1
   prefix-sid index 1
  !
  interface GigabitEthernet0/0/0/3
  !
  interface GigabitEthernet0/0/0/4
   cost 50

#R2
router ospf 1
 apply-group OSPF
 area 0
  interface Loopback1
   prefix-sid index 2
  !
  interface GigabitEthernet0/0/0/3
   cost 50
  !
  interface GigabitEthernet0/0/0/4

#R3
router ospf 1
 apply-group OSPF
 area 0
  interface Loopback1
   prefix-sid index 3
  !
  interface GigabitEthernet0/0/0/1
  !
  interface GigabitEthernet0/0/0/2
   cost 50
  !
  interface GigabitEthernet0/0/0/4
   cost 50
  !
  interface GigabitEthernet0/0/0/5
  !
  interface GigabitEthernet0/0/0/6
  !
  interface GigabitEthernet0/0/0/9

#R4
router ospf 1
 apply-group OSPF
 area 0
  interface Loopback1
   prefix-sid index 4
  !
  interface GigabitEthernet0/0/0/1
   cost 50
  !
  interface GigabitEthernet0/0/0/2
  !
  interface GigabitEthernet0/0/0/3
   cost 50
  !
  interface GigabitEthernet0/0/0/5
  !
  interface GigabitEthernet0/0/0/6
  !
  interface GigabitEthernet0/0/0/10

#R5
router ospf 1
 apply-group OSPF
 area 0
  interface Loopback1
   prefix-sid index 5
  !
  interface GigabitEthernet0/0/0/3
  !
  interface GigabitEthernet0/0/0/4
  !
  interface GigabitEthernet0/0/0/6
   cost 50
  !
  interface GigabitEthernet0/0/0/7
  !
  interface GigabitEthernet0/0/0/8
   cost 50
  !
  interface GigabitEthernet0/0/0/9

#R6
router ospf 1
 apply-group OSPF
 area 0
  interface Loopback1
   prefix-sid index 6
  !
  interface GigabitEthernet0/0/0/3
  !
  interface GigabitEthernet0/0/0/4
  !
  interface GigabitEthernet0/0/0/5
   cost 50
  !
  interface GigabitEthernet0/0/0/7
   cost 50
  !
  interface GigabitEthernet0/0/0/8
  !
  interface GigabitEthernet0/0/0/10

#R7
router ospf 1
 apply-group OSPF
 area 0
  interface Loopback1
   prefix-sid index 7
  !
  interface GigabitEthernet0/0/0/5
  !
  interface GigabitEthernet0/0/0/6
   cost 50

#R8
router ospf 1
 apply-group OSPF
 area 0
  interface Loopback1
   prefix-sid index 8
  !
  interface GigabitEthernet0/0/0/5
   cost 50
  !
  interface GigabitEthernet0/0/0/6

#R9
router ospf 1
 apply-group OSPF
 area 0
  interface Loopback1
   prefix-sid index 9
  !
  interface GigabitEthernet0/0/0/3
  !
  interface GigabitEthernet0/0/0/5

#R10
router ospf 1
 apply-group OSPF
 area 0
  interface Loopback1
   prefix-sid index 10
  !
  interface GigabitEthernet0/0/0/4
  !
  interface GigabitEthernet0/0/0/6

Explanation

SR is enabled for OSPF similarly to ISIS, using the segment-routing mpls command under the process and setting the prefix-sid under the loopback. Just like with ISIS, we can use the prefix-sid absolute label value which would be translated into an index.

#IOS-XR
router ospf 1
 add ipv4 uni
  segment-routing mpls
 int Lo1
   prefix-sid index 1

Using the command show ospf sid-database we can get similar output to ISIS’s show isis segment-routing label table. The L means local.

OSPF uses the opaque LSA to advertise SR information. The opaque LSAs are of type 9 (link local), type 10 (area wide), and type 11 (domain wide). These are used to convey information within OSPF that is not directly used by OSPF for SPF. This information is “opaque” to OSPF.

SR primarily uses type 10 opaque LSAs. We can see the opaque-area LSAs that R1 has generated:

The LSA ID is broken down into X.Y.Y.Y, where X is the type, and Y is the ID. There are four opaque-area LSA types that are used:

  • Type 1 - TE information

    • Link State ID = 0 for router information (TE RID)

    • Link State ID = ifIndex for link TE information

  • Type 4 - Router information

    • Link State ID = 0 for SR router capabilities

  • Type 7 - Extended Prefix

    • Link State ID = random number? or loopback number?

    • Contains the prefix SID for a prefix

  • Type 8 - Extended Link

    • Link State ID = ifIndex

    • Constains the Adj SID(s) for an adjacency

Type 1 (TE Information)

In OSPF, the TE information opaque-area LSAs (type 1) are automatically generated when you enable SR. Note that this appears to be different from ISIS, in which you must manually specify a TE RID and enable the MPLS-TE process to get the ISIS node to advertise a TE RID. This then lets you populate the SR-TED. However, in OSPF, simply as things are configured now, we can distribute link-state on a router and have a fully populated TED.

Let’s examine R1’s TE information LSAs. Below we look at the router information and a single link, just for brevity. This is the same opaque LSA used with regular MPLS-TE (RSVP-TE).

The goal of SR was to de-couple itself from classic MPLS-TE. For this reason, the SR information, prefix SIDs, and adj SIDs are advertised in completely separate Opaque-area LSAs.

Type 4 (Router Information)

The type 4 router information Opaque-area LSA advertises SR capabilities, such as the algos supported, SRGB range, SRLB range, max sid depth, and the hostname (giving OSPF the same hostname-learning capability of ISIS).

Note that, like ISIS, the router does not allocate the SRLB default range by default. If you turn on segment-routing globally, you will see the default SRLB is advertised.

#R1
segment-routing

Type 7 (Extended Prefix)

The type 7 Opaque-area LSA simply advertises a prefix and its associated prefix SID. This is not used for transit prefixes which do not have a prefix SID. Only prefixes with a prefix SID have a type 7 LSA.

Below we can see the AF is 0, which is IPv4. OSPFv2 of course only supports IPv4. The SID index, algo (0), and flags are included for 1.1.1.1/32 as a sub-TLV.

The flags are difficult to understand in OSPF. The parser doesn’t translate the hex value for us.

For a prefix SID, the flags are as follows:

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|A|N|           |
+-+-+-+-+-+-+-+-+
  • A means attached. It is set to indicate that the prefix is IA (inter-area) but attached directly to the ABR advertising the prefix SID

  • N means node SID

We can see above the 0x40 means only the N flag is set. 0x8 would mean only the A flag is set. 0xc0 means both flags are set.

The SID sub-TLV also has its own flags, which are as follows:

 0  1  2  3  4  5  6  7
+--+--+--+--+--+--+--+--+
|  |NP|M |E |V |L |  |  |
+--+--+--+--+--+--+--+--+
  • NP means No-PHP. This is set to disable PHP.

  • M means mapping-server. The prefix SID was advertised by a mapping server.

  • E means explicit-null. When E=1 and NP=1, you get expnull without PHP behavior.

  • V means the absolute value is used. This is never set for prefix SIDs.

  • L means the SID is locally significant. This is never set for prefix SIDs.

Above, we see that all flags are disabled for this prefix SID.

Type 8 (Extended Link)

The type 8 Opaque-area LSA includes the Adj SID(s) for a link. We can see one of the ext-link opaque-area LSAs R1 is advertising below:

The flags for the Adj sub-TLV work as follows:

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|B|V|L|S|       |
+-+-+-+-+-+-+-+-+
  • B means Backup. It is set for protected Adj SIDs

  • V means absolute value. This is always set for Adj SIDs.

  • L means locally significant. This is always set for Adj SIDs.

  • S means set. It is set of the SID represents a set of adjancencies. This feature is not supported in XR.

The flags will always be either 0xe0 (protected Adj SID) or 0x60 (unprotected Adj SID).

We can see an example of a protected Adj SID by enabling TI-LFA on R1.

#R1
router ospf 1
 fast-reroute per-prefix
 fast-reroute per-prefix ti-lfa

Using show ospf nei gi0/0/0/3 detail we can confirm the Adj SID values:

This is advertised in the opaque-area ext-link LSA:

Other notes

Just like ISIS, when SR is enabled for OSPF, it automatically enables MPLS on each interface:

Like ISIS, the routes in the RIB will show via “labeled SR”:

Differences between OSPF and ISIS

You’ll find that SR for OSPF and ISIS is nearly identical. There are only a few very minor differences to be aware of.

In OSPF, sr-prefer is a separate command, while in ISIS, it is a keyword to the command which enables SR.

router ospf 100
 segment-routing mpls
 segment-routing sr-prefer
!
router isis 100
 address-family ipv4 unicast
  segment-routing mpls sr-prefer

In OSPF, TI-LFA can be enabled globally under the process. The normal rules of inheritance apply. You can enable TI-LFA at any level (process, area, interface). In ISIS, you can only enable TI-LFA under the interface.

router ospf 100
 fast-reroute per-prefix
 fast-reroute per-prefix ti-lfa enable

router isis 100
 interface GigabitEthernet0/0/0/0
  address-family ipv4 unicast
   fast-reroute per-prefix
   fast-reroute per-prefix ti-lfa

This difference also leads to a difference with how the TI-LFA tiebreakers work for OSPF and ISIS. For OSPF, the higher index is preferred. The TI-LFA breakers are directly comparable for LFA tiebreakers. This means the same inheritance rules apply as normal. You can configure tiebreakers under the process, area, or interface.

For ISIS, the lower index is preferred. Also, the TI-LFA tiebreakers are completely separate from the LFA tiebreakers. The tiebreakers configured under the ISIS address-family are not inherited by the interface, as these tiebreakers are only for LFA, not TI-LFA. The following configuration tries both node and SRLG protection first, then prefers node protection if a path protecting both cannot be found. In ISIS, only node and SRLG protection can be used with TI-LFA.

router isis 1
 address-family ipv4 unicast
  fast-reroute per-prefix tiebreaker node-protecting index 10
  fast-reroute per-prefix tiebreaker srlg-disjoint index 20

In OSPF, this concept of trying both protections first is the same. However, OSPF can also use lc-disjoint and lowest-backup-metric in the TI-LFA tiebreakers rules as well.

More information on this is present in the TI-LFA labs.

Finally, one last difference is that ISIS is able to support IPv6 for both the SR-MPLS dataplane and SRv6 dataplane. OSPFv3 would be the only option for IPv6 support, but SR is not supported for OSPFv3 as of now.

PreviousBasic SR with ISISNextSRGB Modifcation

Last updated 4 months ago