CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Constraints
  • Testing
  • Multiple candidate paths
  1. Labs
  2. SR

SR-TE Dynamic Policies

PreviousSR-TE with AS Primary/Secondary PathsNextSR-TE Dynamic Policy with Margin

Last updated 1 month ago

Load basic.isis.sr.vpnv4.enabled.cfg

configure
load bootflash:basic.isis.sr.vpnv4.enabled.cfg
commit replace
y

Configure the link affinities as shown in the diagram above. The colors should be BLUE, YELLOW and GREEN.

Configure the R1-R4 link with IGP metric 10

Configure the following policies on R1 with R7 as the endpoint:

Color

Constraint

10

IGP metric

20

TE metric

30

hopcount

40

Use YELLOW and GREEN links

50

Use only BLUE links

60

Use YELLOW or BLUE links

You can test these policies by setting the color from R7 and tracerouting from CE101 to CE107.

Answer

#All routers
router isis 1
 address-family ipv4 unicast
  mpls traffic-eng level-2-only
  mpls traffic-eng router-id Loopback1
 !
!
mpls traffic-eng
!
segment-routing
 traffic-eng
  affinity-map
   name YELLOW bit-position 1
   name BLUE bit-position 0
   name GREEN bit-position 2

#R1
segment-routing
 traffic-eng
  interface GigabitEthernet0/0/0/3
   affinity
    name YELLOW
    name BLUE
    name GREEN
!
segment-routing
 traffic-eng
  policy R7_TE
   color 20 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
  !
  policy R7_HOP
   color 30 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
      metric
       type hopcount
  !
  policy R7_IGP
   color 10 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
      metric
       type igp
  !
  policy R7_USE_BLUE
   color 50 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
     !
     constraints
      affinity
       include-all
        name BLUE
  !
  policy R7_USE_YELLOW_OR_BLUE
   color 60 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
     !
     constraints
      affinity
       include-any
        name BLUE
        name YELLOW
  !
  policy R7_USE_YELLOW_AND_GREEN
   color 40 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
     !
     constraints
      affinity
       include-all
        name GREEN
        name YELLOW

router isis 1
 distribute link-state
 int gi0/0/0/4
  add ipv4 uni
   no metric

#R3
segment-routing
 traffic-eng
  interface GigabitEthernet0/0/0/9
   affinity
    name YELLOW
    name GREEN
  interface Gi0/0/0/5
   affinity
    name BLUE
    name GREEN

#R9
segment-routing
 traffic-eng
  interface GigabitEthernet0/0/0/5
   affinity
    name YELLOW
    name GREEN

#R5
segment-routing
 traffic-eng
  interface GigabitEthernet0/0/0/7
   affinity
    name YELLOW
    name GREEN

Explanation

SR-TE dynamic policies use candidate paths. Each candidate path has a preference - the higher the number, the better the candidate path. If the candidate path cannot be satisfied, the next-preferred path is tried. Note that this is the opposite of RSVP-TE, in which a lower path-option (ex. 1) is better than a higher numbered path-option (ex. 2).

SR-TE policies allow for four dynamic metric types:

  • IGP

  • TE (default)

  • hopcount

  • latency

Only the IGP metric type allows for ECMP. We can test this by examining our color 10 (IGP) and color 20 (TE) policies. The color 10 policy simply uses the prefix SID for R7. There are two ECMP routes, via R3 and via R4.

#R1
segment-routing
 traffic-eng
  policy R7_IGP
   color 10 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
      metric
       type igp

By examining the local label, 24016, we see that there are two outgoing interfaces.

We can also see this information using the command show segment-routing traffic-eng forwarding. Note that this was done after the initial lab writeup, so the BSID and local label is now different. But you can still see the two paths that are used and the outgoing label stack.

SR-TE uses the “SR-native” algorithm which tries to optimize ECMP as much as possible, and tries to reduce the SID list (label stack) as much as possible.

In contrast, we can see that the TE policy (color 20) only uses the path via R4. The router uses R4’s prefix SID and then R7’s prefix SID:

#R1
segment-routing
 traffic-eng
  policy R7_TE
   color 20 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic

I believe the reason for this is that the prefix SIDs have an algo of 0, meaning IGP best path. Therefore only an IGP dynamic policy can use prefix SIDs for ECMP. When using TE, since 16007 doesn’t mean “use the TE-based shortest path to R7”, one path must be explicitly used.

We can also see this with the hop count policy. Because the metric to optimize is hop count, not IGP cost, the router doesn’t do ECMP. Instead it picks a single path.

#R1
segment-routing
 traffic-eng
  policy R7_HOP
   color 30 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
      metric
       type hopcount

The last dynamic metric option is latency, which we will explore in a separate lab.

Constraints

We’ll now explore the constraints we can use on a policy. This includes:

  • Link affinity (color)

  • SRLG

    • Does not work on XRv

  • Disjointness (requires PCE)

    • Explored in a separate lab

  • Flex-algo

    • Expored in a separate lab

To assign colors to a link, we first must define a bit position for a color. This is traditionally a number between 0-31, however using extensions it can be a number up to 255. Each router then assigns affinity names to links. This is advertised into the IGP, just like in RSVP-TE. Alternatively, you could configure this under MPLS-TE instead, and the functionality would be the same.

#All routers
router isis 1
 address-family ipv4 unicast
  mpls traffic-eng level-2-only
  mpls traffic-eng router-id Loopback1
 !
!
mpls traffic-eng
!
segment-routing
 traffic-eng
  affinity-map
   name YELLOW bit-position 1
   name BLUE bit-position 0
   name GREEN bit-position 2

#R1
segment-routing
 traffic-eng
  interface GigabitEthernet0/0/0/3
   affinity
    name YELLOW
    name BLUE
    name GREEN

By examining R1’s LSP, we can see the affinity value. All three bit positions are turned on, resulting in a value of 0x7.

Notice there are 8 extended admin groups, each with a length of 32. This gives us 256 possible bit positions (0-255).

If we configure a new value with bit position 32, we should see the next admin group is used. The legacy affinity value stays the same, but the extended admin group TLV advertises 0x1 on the second set of values.

#R1
segment-routing
 traffic-eng
  affinity-map
   name BLACK bit-position 32
  !
  interface GigabitEthernet0/0/0/3
   affinity
    name BLACK

We can use these affinity values in policies in three ways:

  • Include all values (logical AND)

    • Every link must belong to every affinity group specified

  • Include any value (logical OR)

    • Every link must belong to any one of the affinity groups specified

  • Exclude any values (logical OR)

    • Every link in the path must not have any of the affinity groups specified

Let’s explore color 40. This must use links that are both YELLOW and GREEN.

#R1
segment-routing
 traffic-eng
  policy R7_USE_YELLOW_AND_GREEN
   color 40 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
     !
     constraints
      affinity
       include-all
        name GREEN
        name YELLOW

Color 50 must use only BLUE links. However, the policy cannot be setup. This is because there is no path to R7 in which every link is BLUE.

#R1
segment-routing
 traffic-eng
  policy R7_USE_BLUE
   color 50 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
     !
     constraints
      affinity
       include-all
        name BLUE

Color 60 uses either YELLOW or BLUE links. A path can be found since a link can be either color to meet the constraint.

#R1
segment-routing
 traffic-eng
  policy R7_USE_YELLOW_OR_BLUE
   color 60 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
     !
     constraints
      affinity
       include-any
        name BLUE
        name YELLOW

Testing

We can confirm these policies are working by setting the appropriate color value on routes from R7.

#R7
extcommunity-set opaque TESTING
  40
end-set
!
route-policy SET_COLOR
  set extcommunity color TESTING
end-policy
!
router bgp 100
 vrf BLUE
  neighbor 192.168.107.107
   address-family ipv4 unicast
    route-policy SET_COLOR in

The most interesting policy is color 40, because two labels are pushed: 16009 and 16007.

Multiple candidate paths

Previously we saw that color 50 is failing. Lets add a fallback candidate path and see if that brings color 50 up.

#R1
segment-routing
 traffic-eng
  policy R7_USE_BLUE
   color 50 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
     !
     constraints
      affinity
       include-all
        name BLUE
    preference 90
     dynamic

We can see that preference 100 is tried first, but fails as expected. Next preference 90 is tried, and a path is found:

Note that each candidate path is only tried if the previous fails - not if there is a tie. For example, if we add a candidate path to a currently working policy with a preference worse than the existing candidate path, it will not be used.

#R1
segment-routing
 traffic-eng
  policy R7_HOP
   color 30 end-point ipv4 7.7.7.1
   candidate-paths
    preference 100
     dynamic
      metric
       type hopcount
    preference 90
     dynamic

I believe that preference 90 is invalid because it isn’t even tried, as preference 100 already succeeded.

Also, even though each candidate path technically has its own requested BSID, in practice the same BSID will be used between all candidate paths for a policy. For example, let’s configure a policy that uses two candidate paths:

#R1
segment-routing
 traffic-eng
  policy R7_TEST
   color 100 end-point ipv4 7.7.7.1
   candidate-paths
    preference 90
     dynamic
     !
    !
    preference 100
     dynamic
     !
     constraints
      affinity
       include-all
        name GREEN

The policy is satisfied using preference 100, and a BSID of 24030 is used.

Let’s now remove the GREEN affinity color from the local link on R1. This change in the SR-TED will cause R1 to reoptimize its policies and find that the first candidate path with preference 100 is no longer valid. The TE policy will need to fallback to the candidate path with preference 90. Any IGP topology change will cause a headend or PCE to recalculate paths or re-validate explicit paths. (We will see explicit paths in upcoming labs).

#R1
segment-routing
 traffic-eng
  interface GigabitEthernet0/0/0/3
   affinity
    no name GREEN

Now candidate path with preference 90 is active, and the BSID is retained: