CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Verification
  • Summary
  1. Labs
  2. LDP

LDP Conditional Label Advertisement

Load isis.cfg

#IOS-XE
config replace flash:isis.cfg

#IOS-XR
configure
load bootflash:isis.cfg
commit replace
y

  • Configure LDP using IGP autoconfig on all routers

  • Configure R2 to only advertise labels for /32 routes to R1

  • Configure XR1 to only advertise labels for /32 routes to XR2

Answer

#R1-R6
router isis
 mpls ldp autoconfig

#R2
no mpls ldp advertise-labels
mpls ldp advertise-labels for SACL_HOST_ROUTES to SACL_PERMIT_ANY
mpls ldp advertise-labels for SACL_PERMIT_ANY to SACL_LDP_ALL_OTHER_NEIGHBORS
!
ip access-list standard SACL_HOST_ROUTES
 permit host 1.1.1.1
 permit host 2.2.2.2
 permit host 3.3.3.3
 permit host 4.4.4.4
 permit host 5.5.5.5
 permit host 6.6.6.6
 permit host 19.19.19.19
 permit host 20.20.20.20
!
ip access-list standard SACL_PERMIT_ANY
 permit any
!
ip access-list standard SACL_LDP_ALL_OTHER_NEIGHBORS
 deny host 1.1.1.1
 permit any

#XR1, XR2
router isis 1
 add ipv4
  mpls ldp auto-config
!
mpls ldp

#XR1
mpls ldp
 address-family ipv4
  label
   local
    advertise
     disable
     for ACL_HOST_ROUTES to ACL_PERMIT_ANY
     for ACL_NOT_HOST_ROUTES to ACL_NOT_XR2
!
ipv4 access-list ACL_HOST_ROUTES
 permit ipv4 host 1.1.1.1 any
 permit ipv4 host 2.2.2.2 any
 permit ipv4 host 3.3.3.3 any
 permit ipv4 host 4.4.4.4 any
 permit ipv4 host 5.5.5.5 any
 permit ipv4 host 6.6.6.6 any
 permit ipv4 host 19.19.19.19 any
 permit ipv4 host 20.20.20.20 any
!
ipv4 access-list ACL_PERMIT_ANY 
 permit ipv4 any any
!
ipv4 access-list ACL_NOT_HOST_ROUTES
 deny ipv4 host 1.1.1.1 any
 deny ipv4 host 2.2.2.2 any
 deny ipv4 host 3.3.3.3 any
 deny ipv4 host 4.4.4.4 any
 deny ipv4 host 5.5.5.5 any
 deny ipv4 host 6.6.6.6 any
 deny ipv4 host 19.19.19.19 any
 deny ipv4 host 20.20.20.20 any
 permit ipv4 any any
!
ipv4 access-list ACL_NOT_XR2
 deny ipv4 host 20.20.20.20 any
 permit ipv4 any any

Explanation

LDP Conditional label advertisement is very confusing. First, on any router we want to implement outbound advertisement filtering, we must disable the default advertisement which is for all prefixes. Without doing this, we will always advertise all label bindings to all neighbors, no matter what additional filters we add.

#IOS-XE
no mpls ldp advertise-labels

#IOS-XR
mpls ldp
 address-family ipv4
  label
   local
    advertise
     disable

This posses a big problem when we go to advertise labels to only certain peers. For example, if we implement the following filter on R2 towards R1, we are also at the same time not advertising any label bindings towards R3 or R4. (This is due to no mpls ldp advertise-labels command).

#R2
no mpls ldp advertise-labels
mpls ldp advertise-labels for SACL_HOST_ROUTES to SACL_R1
!
ip access-list standard SACL_HOST_ROUTES
 permit host 1.1.1.1
 permit host 2.2.2.2
 permit host 3.3.3.3
 permit host 4.4.4.4
 permit host 5.5.5.5
 permit host 6.6.6.6
 permit host 19.19.19.19
 permit host 20.20.20.20
!
ip access-list standard SACL_R1
 permit host 1.1.1.1

So instead, we must advertise the host routes to all peers, and then advertise all prefixes to not R1.

#R2
no mpls ldp advertise-labels
mpls ldp advertise-labels for SACL_HOST_ROUTES to SACL_PERMIT_ANY
mpls ldp advertise-labels for SACL_PERMIT_ANY to SACL_LDP_ALL_OTHER_NEIGHBORS
!
ip access-list standard SACL_HOST_ROUTES
 permit host 1.1.1.1
 permit host 2.2.2.2
 permit host 3.3.3.3
 permit host 4.4.4.4
 permit host 5.5.5.5
 permit host 6.6.6.6
 permit host 19.19.19.19
 permit host 20.20.20.20
!
ip access-list standard SACL_PERMIT_ANY
 permit any
!
ip access-list standard SACL_LDP_ALL_OTHER_NEIGHBORS
 deny host 1.1.1.1
 permit any

Unfortunately, this logic does not work on XR1. On XR1, if we try this, XR1 will seem to match the SACL_PERMIT_ANY entry first, and not advertise any label bindings to XR2. So instead, we implement something even more complicated. We have a second ACL which is ACL_NOT_HOST_ROUTES which individually denies the loopback prefixes.

#XR1
mpls ldp
 address-family ipv4
  label
   local
    advertise
     disable
     for ACL_HOST_ROUTES to ACL_PERMIT_ANY
     for ACL_NOT_HOST_ROUTES to ACL_NOT_XR2
!
ipv4 access-list ACL_HOST_ROUTES
 permit ipv4 host 1.1.1.1 any
 permit ipv4 host 2.2.2.2 any
 permit ipv4 host 3.3.3.3 any
 permit ipv4 host 4.4.4.4 any
 permit ipv4 host 5.5.5.5 any
 permit ipv4 host 6.6.6.6 any
 permit ipv4 host 19.19.19.19 any
 permit ipv4 host 20.20.20.20 any
!
ipv4 access-list ACL_PERMIT_ANY 
 permit ipv4 any any
!
ipv4 access-list ACL_NOT_HOST_ROUTES
 deny ipv4 host 1.1.1.1 any
 deny ipv4 host 2.2.2.2 any
 deny ipv4 host 3.3.3.3 any
 deny ipv4 host 4.4.4.4 any
 deny ipv4 host 5.5.5.5 any
 deny ipv4 host 6.6.6.6 any
 deny ipv4 host 19.19.19.19 any
 deny ipv4 host 20.20.20.20 any
 permit ipv4 any any
!
ipv4 access-list ACL_NOT_XR2
 deny ipv4 host 20.20.20.20 any
 permit ipv4 any any

The above label advertisement indentifies two separate ACLs for advertisement:

  • ACL_HOST_ROUTES to any neighbors

  • ACL_NOT_HOST_ROUTES (anything not to a loopback) to any neighbors besides XR2

Verification

On R3, verify that R2 is still advertising a label binding for every prefix:

On R1, verify that R2 is only advertising a label binding for host routes:

On R6, we should likewise see all label bindings advertised from XR1:

On XR2, we should only see bindings for /32 prefixes:

On R2, we can see each LIB entry and the ACL it matches using the following command:

We can see the same on XR1:

Using this command, we can see why the logic we are doing on R2 didn’t work on XR1. Let’s move the XR1 advertisement filtering back to:

  • ACL_HOST_ROUTES to all neighbors

  • ACL_PERMIT_ANY to all neighbors besides XR2

mpls ldp
 address-family ipv4
  label
   local
    advertise
     disable
     for ACL_HOST_ROUTES to ACL_PERMIT_ANY
     for ACL_PERMIT_ANY to ACL_NOT_XR2

Above, the ACL_HOST_ROUTES never gets matched. This appears to be because the ACL entries get re-ordered in the config:

On R2, the SACL_HOST_ROUTES is first in the config, which might explain why it works. This actually seems very fragile. Could a router reload change the ACL order and break this on R2?

Summary

Outbound LDP label advertisement filtering is very complex. You are limited to using an ACL which makes it difficult to scale as well. In this lab, we would have to manually add ACL entries for every new router’s loopback that is added to the topology.

Additionally, there is the complexity of having to completely disable outbound label advertisements altogether, and create new outbound policies to re-advertise all label bindings to all other neighbors. So in this situation, using local allocating filtering is much better than trying to achieve a similar result using outbound label filtering.

I can see this feature only working well perhaps for a Unified MPLS type of setup, where the ABR is advertising label bindings for the “other” IGP. You could do outbound label filtering in that case. If, for example, you use 10/8 and 20/8 for each separate IGP, that might help scale the ACL management. However, it doesn’t matter if the ABR advertises these bindings, because the router will not have IGP routes for those bindings, and simply won’t use them. But perhaps a lab task could be to implement this feature for scalability. (You’re doing Unified MPLS to scale anyways, so why advertise all those label bindings unnecessarily too?)

PreviousLDP Local Allocation FilteringNextLDP Inbound Label Advertisement Filtering

Last updated 2 months ago