CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Verification
  1. Labs
  2. BGP

Provider Communities

PreviousMultihomed Enterprise ChallengeNextDestination-Based RTBH

Last updated 3 months ago

Topology: bgp-mh-iol

configure replace unix:init.cfg

  • All links are in the format 100.X.Y.X/24.

    • For example, the link between R4 and R7 is 100.4.7.0/24.

  • Lo0 is X.X.X.X/32 and is used for iBGP

  • Lo1 is <AS>.0.0.X/32 and is used as a public IP address that is pingable. The public Lo1 addresses are aggregated into a /8 at each edge router.

  • eBGP and iBGP is fully preconfigured.

Configure communities in AS20 to accomplish the following:

  • AS10 is an upstream provider, AS40 is a transit peer, and AS50 is a customer. Only advertise customer and local routes to transit peers and providers. Do not let transit routes leak to upstream providers, and upstream routes leak to transit providers.

  • Allow AS50 to control their inbound traffic using the following table:

Community

Action

20:80

LP=80

20:90

LP=90

20:110

LP=110

20:120

LP=120

20:1

Prepend AS20 one additional time on advertisements to upstreams

20:2

Prepend AS20 two additional times on advertisements to upstreams

20:3

Prepend AS20 three additional times on advertisements to upstreams

Answer

#R2, R4, R5
ip bgp-community new-format
!
ip community-list standard LP_80 permit 20:80
ip community-list standard LP_90 permit 20:90
ip community-list standard LP_110 permit 20:110
ip community-list standard LP_120 permit 20:120
ip community-list standard PREPEND_1 permit 20:1
ip community-list standard PREPEND_2 permit 20:2
ip community-list standard PREPEND_3 permit 20:3
ip community-list standard LOCAL_PREFIXES permit 20:1000
ip community-list standard CUSTOMER_PREFIXES permit 20:2000
ip community-list standard TRANSIT_PREFIXES permit 20:3000
!
route-map LOCAL_PREFIX
 set community 20:1000
!
router bgp 20
 template peer-policy IBGP
  send-community
 exit-peer-policy
 !
 address-family ipv4
  network 20.0.0.0 route-map LOCAL_PREFIX

#R2
route-map TRANSIT_PEER_INBOUND
 set community 20:3000
!
route-map TRANSIT_PEER_OUTBOUND
 match community LOCAL_PREFIXES
!
route-map TRANSIT_PEER_OUTBOUND permit 20
 match community CUSTOMER_PREFIXES
!
route-map UPSTREAM_INBOUND
 set community 20:3000
!
route-map UPSTREAM_OUTBOUND deny 10
 match community TRANSIT_PREFIXES
!
route-map UPSTREAM_OUTBOUND permit 20
 match community PREPEND_1
 set as-path prepend 20
!
route-map UPSTREAM_OUTBOUND permit 30
 match community PREPEND_2
 set as-path prepend 20 20
!
route-map UPSTREAM_OUTBOUND permit 40
 match community PREPEND_3
 set as-path prepend 20 20 20
!
route-map UPSTREAM_OUTBOUND permit 1000
!
router bgp 20
 address-family ipv4
  neighbor 100.1.2.1 route-map UPSTREAM_INBOUND in
  neighbor 100.1.2.1 route-map UPSTREAM_OUTBOUND out
  neighbor 100.2.10.10 route-map TRANSIT_PEER_INBOUND in
  neighbor 100.2.10.10 route-map TRANSIT_PEER_OUTBOUND out

#R4, R5
route-map CUSTOMER_INBOUND
 match community LP_80
 set local-pref 80
 continue 1000
!
route-map CUSTOMER_INBOUND permit 20
 match community LP_90
 set local-pref 90
 continue 1000
!
route-map CUSTOMER_INBOUND permit 30
 match community LP_110
 set local-pref 110
 continue 1000
!
route-map CUSTOMER_INBOUND permit 40
 match community LP_120
 set local-pref 120
 continue 1000
!
route-map CUSTOMER_INBOUND permit 1000
 set community 20:2000 additive

#R4
router bgp 20
 add ipv4
  neighbor 100.4.7.7 route-map CUSTOMER_INBOUND in

#R5
router bgp 20
 add ipv4
  neighbor 100.5.8.8 route-map CUSTOMER_INBOUND in

Explanation

Using communities for routing policies can produce route-maps that become quite complex. This lab solution uses the following communities within AS20:

Community

Action/Purpose

20:80

LP=80

20:90

LP=90

20:110

LP=110

20:120

LP=120

20:1

Prepend AS20 one additional time on advertisements to upstreams

20:2

Prepend AS20 two additional times on advertisements to upstreams

20:3

Prepend AS20 three additional times on advertisements to upstreams

20:1000

Locally injected prefixes

20:2000

Customer learned prefixes

20:3000

Transit learned prefixes (these should never be advertised to another transit provider)

First a series of community lists are defined on all routers in AS20 that identify each of these communities.

Next, we configure the local AS20 prefix to be injected with the 20:1000 community.

route-map LOCAL_PREFIX
 set community 20:1000
!
router bgp 20
 address-family ipv4
  network 20.0.0.0 route-map LOCAL_PREFIX

Next we configure policies for the transit peer (R10). Only customer and local prefixes should be advertised. The instructions say to only prepend customer routes to upstream providers, so we don’t have to worry about prepending towards transit peers. Routes received inbound from the peer are tagged with 20:3000.

#R2
route-map TRANSIT_PEER_INBOUND
 set community 20:3000
!
route-map TRANSIT_PEER_OUTBOUND
 match community LOCAL_PREFIXES
!
route-map TRANSIT_PEER_OUTBOUND permit 20
 match community CUSTOMER_PREFIXES
!
router bgp 20
 address-family ipv4
  neighbor 100.2.10.10 route-map TRANSIT_PEER_INBOUND in
  neighbor 100.2.10.10 route-map TRANSIT_PEER_OUTBOUND out

The upstream peer is a little more complex, because we must advertise only customer and local prefixes, but also prepend the announcement depending on a customer-received community. The solution in this lab is to deny the transit prefixes (20:3000) which will only end up allowing customer and local prefixes. Then an individual sequence is used for each AS path prepend.

#R2
route-map UPSTREAM_INBOUND
 set community 20:3000
!
route-map UPSTREAM_OUTBOUND deny 10
 match community TRANSIT_PREFIXES
!
route-map UPSTREAM_OUTBOUND permit 20
 match community PREPEND_1
 set as-path prepend 20
!
route-map UPSTREAM_OUTBOUND permit 30
 match community PREPEND_2
 set as-path prepend 20 20
!
route-map UPSTREAM_OUTBOUND permit 40
 match community PREPEND_3
 set as-path prepend 20 20 20
!
route-map UPSTREAM_OUTBOUND permit 1000
!
router bgp 20
 address-family ipv4
  neighbor 100.1.2.1 route-map UPSTREAM_INBOUND in
  neighbor 100.1.2.1 route-map UPSTREAM_OUTBOUND out

R4 and R5 need to have an inbound customer route-map that tags the received routes with 20:2000 and allows the customer to set local pref. The continue statement is used in this solution, which always tags the customer route with 20:2000, no matter which local pref is assigned. The additive keyword is used to retain any communities that are attached by the customer, such as AS path prepending communities.

route-map CUSTOMER_INBOUND
 match community LP_80
 set local-pref 80
 continue 1000
!
route-map CUSTOMER_INBOUND permit 20
 match community LP_90
 set local-pref 90
 continue 1000
!
route-map CUSTOMER_INBOUND permit 30
 match community LP_110
 set local-pref 110
 continue 1000
!
route-map CUSTOMER_INBOUND permit 40
 match community LP_120
 set local-pref 120
 continue 1000
!
route-map CUSTOMER_INBOUND permit 1000
 set community 20:2000 additive

#R4
router bgp 20
 add ipv4
  neighbor 100.4.7.7 route-map CUSTOMER_INBOUND in

Verification

R1 and R10 should only receive customer and local prefixes from R2. This includes 20/8 and 50/8.

We should see that routes belong to the appropriate communities on R2. 20/8 belongs to 20:1000, 50/8 belongs to 20:2000, and 10/8, 30/8, 40/8 belong to 20:3000. Note that 50/8 also belongs to 20:3000, but this is only the advertisement from R1. This is not currently the best path.

Let’s now test that communities work inbound from a customer. On R7 we’ll set local preference higher and also prepend the announcement twice.

#R7
route-map R4_OUT
 set community 20:120 20:2
!
router bgp 50
 add ipv4
  neighbor 100.4.7.4 route-map R4_OUT out
  neighbor 100.4.7.4 send-community
  
do clear ip bgp * soft out

On R2 we see that the route indeed has an LP of 120, and is prepended two more times to R1.