CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Task 1. Create a template service
  • Task 2. Apply one service per device
  • Task 2a. Auto-rollback Example
  • Task 3. Add BGP advertisement of the loopback to the template
  1. Labs
  2. NSO

Advanced NSO Template Service

Load blank.ssh.enabled.cfg

#IOS-XE
config replace flash:blank.ssh.enabled.cfg
 
#IOS-XR
configure
load bootflash:blank.ssh.enabled.cfg
commit replace
y

Task 1. Create a template service

Create one single template service that configures loopback99 on either IOS-XE or IOS-XR.

  • The YANG module should only allow one device per service.

  • The loopback should be restricted to the format 10.0.0.X.

  • The mask should always be /32.

  • The loopback address should always be required.

  • The loopback must be unique between multiple devices.

If you are starting this lab without doing the previous one, you can add all devices to NSO with this config:

Initial NSO Configuration
devices global-settings ssh-algorithms public-key [ ssh-ed25519 ecdsa-sha2-nistp256 ecdsa-sha2-nistp384 ecdsa-sha2-nistp521 rsa-sha2-512 rsa-sha2-256 ssh-rsa ssh-dss  ]

devices device r1
address 10.254.0.101
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked

devices device r2
address 10.254.0.102
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r3
address 10.254.0.103
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r4
address 10.254.0.104
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r5
address 10.254.0.105
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r6
address 10.254.0.106
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r7
address 10.254.0.107
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r8
address 10.254.0.108
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r9
address 10.254.0.109
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r10
address 10.254.0.110
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device xr1
address 10.254.0.111
authgroup default
device-type cli ned-id cisco-iosxr-cli-7.49
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device xr2
address 10.254.0.112
authgroup default
device-type cli ned-id cisco-iosxr-cli-7.49
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device xr3
address 10.254.0.113
authgroup default
device-type cli ned-id cisco-iosxr-cli-7.49
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device xr4
address 10.254.0.114
authgroup default
device-type cli ned-id cisco-iosxr-cli-7.49
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device-group XE
device-name r1
device-name r2
device-name r3
device-name r4
device-name r5
device-name r6
device-name r7
device-name r8
device-name r9
device-name r10

devices device-group XR
device-name xr1
device-name xr2
device-name xr3
device-name xr4

devices device-group ALL
device-group XE
device-group XR

Task 1 Answer
# Stop ncs
cd ~/nso-instance
ncs --stop

# Navigate to the packages dir of the instance
cd ~/nso-instance/packages

# Create a skeleton template package
ncs-make-package --service-skeleton template loopback

# Edit the YANG data module
nano ~/nso-instance/packages/loopback/src/yang/loopback.yang

Change the leaf-list device line to just a leaf. By default, this service can be applied to a list of devices. However, we are configuring one service per device.

Change the dummy leaf to be an “ip-address” leaf. Add a constraint and make this leaf required. Use the pattern keyword, making sure to preface literal dots with two slashes (\\).

Require that the ip-address leaf value is unique among all instances of this service.

Grab the XML config from NCS using a template and outputting the dry-run in XML format. Previously, we created a template per-device type. However, NCS native templates allow you to specify a config per-NED type. We can use this to build a single package template that handles both XE and XR.

config
devices template LOOPBACK
 ned-id cisco-iosxr-cli-7.49
  config
   interface Loopback 99
    ipv4 address ip 10.0.0.1
    ipv4 address mask 255.255.255.255
   !
  !
 !
 ned-id cisco-ios-cli-6.92
  config
   interface Loopback 99
    ip address primary address 10.0.0.1
    ip address primary mask 255.255.255.255
 
commit dry-run outformat xml

We’ll use both of the config sections for the package template. NCS is able to know whether to apply the IOS or IOSXR config to each device.

nano ~/nso-instance/packages/loopback/templates/loopback-template.xml

We’ll now make the package.

cd ~/nso-instance/packages/loopback/src
make

Start NCS and reload the packages.

cd ~/nso-instance
ncs

ncs_cli -Cu admin
packages reload

Task 2. Apply one service per device

Task 2 Answer
# Shown below is only R1, R2, XR1, and XR2
loopback R1
 device     r1
 ip-address 10.0.0.1
!
loopback R2
 device     r2
 ip-address 10.0.0.2
!
loopback XR1
 device     xr1
 ip-address 10.0.0.11
!
loopback XR2
 device     xr2
 ip-address 10.0.0.12

Notice how the YANG module affects the CLI. When we create a new service, we are prompted for the required IP address:

We are also constrainted to the format 10.0.0.X:

Additionally, we can only apply each service to one device, as we changed the device type from leaf-list to leaf. If device was a leaf-list, we would have an open bracket ([) as a possible completion:

When we commit the config, NSO only applys the IOS config to the IOS-XE routers, and the IOS-XR config to the IOS-XR routers.

Also, notice that the loopback IP address must be unique between services. We cannot assign the same IP address to different loopback services:

Task 2a. Auto-rollback Example

Currently R1 has 10.0.0.1/32 on a different interface:

Watch what happens when I commit:

On another device, such as R2, the configuration is changed, but then is automatically rolled back when NSO finds that the IP address overlaps with another existing interface.

This is called an atomic commit. NSO only allows the commit to complete on all devices if all devices are successful. If any one device has an issue, the commit is rolled back on all devices completely.

Task 3. Add BGP advertisement of the loopback to the template

Add configuration that advertises the loopback into BGP ASN 65000 to the template. Make sure that you account for the differences in IOS-XE vs. IOS-XR.

Task 3 Answer

# Edit the template to include the BGP configuration.
# Stage this in NSO first to capture the XML formating
devices device r1
config
router bgp 65000
network 1.1.1.1 mask 255.255.255.255
  !
 !
!
devices device xr1
config
router bgp 65000
address-family ipv4 unicast
network 1.1.1.1/32

commit dry-run outformat xml

Notice above that after the <config> stanza, we have the same router XMLNS (XML namespace) stanza. This means that we can simply take the config at this router stanza and paste it underneath our loopback config.

nano ~/nso-instance/packages/loopback/templates/loopback-template.xml
user@ubuntu22-server:~/nso-instance$ cat ~/nso-instance/packages/loopback/templates/loopback-template.xml
<config-template xmlns="http://tail-f.com/ns/config/1.0"
                 servicepoint="loopback">
  <devices xmlns="http://tail-f.com/ns/ncs">
    <device>
      <name>{/device}</name>
      <config>
 <interface xmlns="http://tail-f.com/ned/cisco-ios-xr">
                       <Loopback>
                         <id>99</id>
                         <ipv4>
                           <address>
                             <ip>{ip-address}</ip>
                             <mask>255.255.255.255</mask>
                           </address>
                         </ipv4>
                       </Loopback>
                     </interface>
<router xmlns="urn:ios">
                     <bgp>
                       <as-no>65000</as-no>
                       <network>
                         <number>{ip-address}</number>
                         <mask>255.255.255.255</mask>
                       </network>
                     </bgp>
                   </router>
                     <interface xmlns="urn:ios">
                       <Loopback>
                         <name>99</name>
                         <ip>
                           <address>
                             <primary>
                               <address>{ip-address}</address>
                               <mask>255.255.255.255</mask>
                             </primary>
                           </address>
                         </ip>
                       </Loopback>
                     </interface>
<router xmlns="http://tail-f.com/ned/cisco-ios-xr">
                     <bgp>
                       <bgp-no-instance>
                         <id>65000</id>
                         <address-family>
                           <ipv4>
                             <unicast>
                               <network>
                                 <net>{ip-address}/32</net>
                               </network>
                             </unicast>
                           </ipv4>
                         </address-family>
                       </bgp-no-instance>
                     </bgp>
                   </router>
      </config>
    </device>
  </devices>
</config-template>
user@ubuntu22-server:~/nso-instance1$

We’ll now reload this package in NCS and apply it to our routers.

ncs_cli -Cu admin
packages reload
conf
loopback R1 ip-address 10.0.0.1 device r1
loopback XR1 ip-address 10.0.0.11 device xr1

PreviousBasic NSO Template ServiceNextAdvanced NSO Template Service #2

Last updated 2 months ago