CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Summary
  1. Labs
  2. Inter-AS L3VPN

Inter-AS Option A Multi-Homed

PreviousInter-AS Option C w/ RT RewriteNextInter-AS Option B Multi-Homed

Last updated 2 months ago

Load inter.as.l3vpn.option.a.multi.homed.init.cfg

#IOS-XE
config replace flash:inter.as.l3vpn.option.a.multi.homed.init.cfg
 
#IOS-XR
configure
load bootflash:inter.as.l3vpn.option.a.multi.homed.init.cfg
commit replace
y

A link has been added between R3 and R4. Configure a multi-homed inter-AS option A setup, so that R7/R8 and R9/R10 have reachability. Everything has been preconfigured except for the inter-AS setup.

Use R1-XR1 as the primary link for VPN_A, and R3-R4 as the primary link for VPN_B. In the case of link failure, the other remaining link should provide backup.

Answer

#R1
vrf definition VPN_A
 rd 100:1
 route-target export 100:1
 route-target import 100:1
 !
 address-family ipv4
 exit-address-family
!
vrf definition VPN_B
 rd 100:2
 route-target export 100:2
 route-target import 100:2
 address-family ipv4
 exit-address-family
!
int Gi2.30
 vrf forwarding VPN_A
 ip add 30.1.19.1 255.255.255.0

int gi2.40
 vrf forwarding VPN_B
 ip add 40.1.19.1 255.255.255.0
!
route-map SET_LP_110
 set local-pref 110
!
router bgp 100
 neighbor 3.3.3.3 remote-as 100
 neighbor 3.3.3.3 update-so lo0
 neighbor 2.2.2.2 remote-as 100
 neighbor 2.2.2.2 update-so lo0
 !
 add vpnv4
  neighbor 3.3.3.3 activate
  neighbor 2.2.2.2 activate
 !
 add ipv4 vrf VPN_A
  neighbor 30.1.19.19 remote-as 200
  neighbor 30.1.19.19 route-map SET_LP_110 in
 add ipv4 vrf VPN_B
  neighbor 40.1.19.19 remote-as 200
  
#R2
router bgp 100
 neighbor 3.3.3.3 remote-as 100
 neighbor 3.3.3.3 update-source Loopback0
 !
 address-family vpnv4
  neighbor 3.3.3.3 activate
  neighbor 3.3.3.3 send-community extended

#R3
vrf definition VPN_A
 rd 100:1
 route-target export 100:1
 route-target import 100:1
 !
 address-family ipv4
 exit-address-family
!
vrf definition VPN_B
 rd 100:2
 route-target export 100:2
 route-target import 100:2
 address-family ipv4
 exit-address-family
!
int Gi2.30
 vrf forwarding VPN_A
 ip add 30.3.4.3 255.255.255.0

int gi2.40
 vrf forwarding VPN_B
 ip add 40.3.4.3 255.255.255.0
!
route-map SET_LP_110
 set local-pref 110
!
router bgp 100
 neighbor 1.1.1.1 remote-as 100
 neighbor 1.1.1.1 update-so lo0
 neighbor 2.2.2.2 remote-as 100
 neighbor 2.2.2.2 update-so lo0
 !
 add vpnv4
  neighbor 1.1.1.1 activate
  neighbor 2.2.2.2 activate
 !
 add ipv4 vrf VPN_A
  neighbor 30.3.4.4 remote-as 200 
 add ipv4 vrf VPN_B
  neighbor 40.3.4.4 remote-as 200
  neighbor 40.3.4.4 route-map SET_LP_110 in
  
#R4
vrf def VPN_A
 rd 200:1
 route-target both 200:1
 address-family ipv4
!
vrf def VPN_B
 rd 200:2
 route-target both 200:2
 address-family ipv4
!
int Gi2.30
 vrf forwarding VPN_A
 ip add 30.3.4.4 255.255.255.0

int gi2.40
 vrf forwarding VPN_B
 ip add 40.3.4.4 255.255.255.0
!
route-map SET_LP_110
 set local-pref 110
!
router bgp 200
 neighbor 19.19.19.19 remote-as 200
 neighbor 19.19.19.19 update-so lo0
 neighbor 20.20.20.20 remote-as 200
 neighbor 20.20.20.20 update-so lo0
 !
 add vpnv4
  neighbor 19.19.19.19 activate
  neighbor 20.20.20.20 activate
 !
 add ipv4 vrf VPN_A
  neighbor 30.3.4.3 remote-as 100 
 add ipv4 vrf VPN_B
  neighbor 40.3.4.3 remote-as 100
  neighbor 40.3.4.3 route-map SET_LP_110 in

#XR1
vrf VPN_A
 address-family ipv4 unicast
  import route-target
   200:1
  !
  export route-target
   200:1
  !
 !
!
vrf VPN_B
 address-family ipv4 unicast
  import route-target
   200:2
  !
  export route-target
   200:2
!
int gi0/0/0/0.30
 no ipv4 add
 vrf VPN_A
 ipv4 add 30.1.19.19/24
!
int gi0/0/0/0.40
 no ipv4 add
 vrf VPN_B
 ipv4 add 40.1.19.19/24
!
route-policy PASS
 pass
end-policy
!
route-policy SET_LP_110
 set local-pref 110
end-policy
!
router bgp 200
 vrf VPN_A
  rd 200:1
  add ipv4 unicast
  !
  neighbor 30.1.19.1
   remote-as 100
   add ipv4 unicast
    route-policy SET_LP_110 in
    route-policy PASS out
 !
 vrf VPN_B
  rd 200:2
  add ipv4 unicast
  !
  neighbor 40.1.19.1
   remote-as 100
   add ipv4 unicast
    route-policy PASS in
    route-policy PASS out

#XR2
router bgp 200
 neighbor 4.4.4.4
  remote-as 200
  update-source Loopback0
  address-family vpnv4 unicast

Explanation

This configuration looks quite complex but in reality it’s not too difficult. All ASBRs treat each other as CEs, as they always do in option A. Because we want VPN_A to use the R1-XR1 link primarily, and VPN_B to use the R3-R4 link primarily, we use LP on all ASBRs to enforce this.

#R1
router bgp 100
 add ipv4 vrf VPN_A
  neighbor 30.1.19.19 remote-as 200
  neighbor 30.1.19.19 route-map SET_LP_110 in
 add ipv4 vrf VPN_B
  neighbor 40.1.19.19 remote-as 200
 
#R3
router bgp 100
 add ipv4 vrf VPN_A
  neighbor 30.3.4.4 remote-as 200 
 add ipv4 vrf VPN_B
  neighbor 40.3.4.4 remote-as 200
  neighbor 40.3.4.4 route-map SET_LP_110 in
  
#R4
router bgp 200
 add ipv4 vrf VPN_A
  neighbor 30.3.4.3 remote-as 100 
 add ipv4 vrf VPN_B
  neighbor 40.3.4.3 remote-as 100
  neighbor 40.3.4.3 route-map SET_LP_110 in

#XR1
router bgp 200
 vrf VPN_A
  rd 200:1
  add ipv4 unicast
  !
  neighbor 30.1.19.1
   remote-as 100
   add ipv4 unicast
    route-policy SET_LP_110 in
    route-policy PASS out
 !
 vrf VPN_B
  rd 200:2
  add ipv4 unicast
  !
  neighbor 40.1.19.1
   remote-as 100
   add ipv4 unicast
    route-policy PASS in
    route-policy PASS out

We can verify this by doing a traceroute between the CEs. VPN_A uses the R1-XR1 link:

VPN_B uses the R3-R4 link:

If we shutdown the ASBR-ASBR link for R1-XR1, we can see that VPN_A traffic fails over to use the R3-R4 link.

#R1
int gi2.30
 shut
int gi2.40
 shut

#XR1
int gi0/0/0/0.30
 shut
int gi0/0/0/0.40
 shut

Likewise, if we bring this link back up and shutdown the R3-R4 links, VPN_B traffic fails over to use the R1-XR1 link.

#R3, R4
int gi2.30
 shut
int gi2.40
 shut

Summary

Dual-homing with inter-AS option A is really no different than dual-homing with IPv4 or VPNv4 CEs in general. We can use any BGP techinque such as LP, AS path prepending, MED, etc. to create primary and backup routes. This scenario is a popular choice among SPs because option A involves the least amount of coordination, and dual homing in this manner is an easy way to achieve redundancy.

Many situations may not have a primary/backup circuit, instead just using the default IGP lowest cost path to determine the best route. In fact, in our lab, if we remove all LP configuration, all traffic will use R3-R4 as primary due to the shortest IGP cost to the nexthop from the PEs R2 and XR2.