CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Verification
  • Further Reading
  1. Labs
  2. Intra-AS L3VPN

Troubleshoot #2 (OSPF)

PreviousTroubleshoot #1 (BGP)NextTroubleshoot #3 (OSPF)

Last updated 2 months ago

Load vpnv4.intra-as.tshoot2.init.cfg

#IOS-XE
config replace flash:vpnv4.intra-as.tshoot2.init.cfg

#IOS-XR
configure
load bootflash:vpnv4.intra-as.tshoot2.init.cfg
commit replace
y

R1 and XR2 are running OSPF as the PE-CE protocol for both IPv4 and IPv6. They have a direct link between them but it is low bandwidth. They’d like to use this as a backup link in case their WAN circuits go down.

They set the OSPF metric high for this backup link, but traffic still prefers this link instead of the WAN. Explain the problem and find a solution.

Answer

#R2
int lo1
 vrf forwarding A
 ip add 10.2.2.2 255.255.255.255
 ipv6 add 2001::2/128
!
router bgp 100
 add ipv4 uni vrf A
  network 10.2.2.2 mask 255.255.255.255
 !
 add ipv6 uni vrf A
  network 2001::2/128
  no redistribute ospf 100 include-connected
  redistribute ospf 100
!
ip prefix-list SHAM_LINK_ENDPOINTS permit 10.2.2.2/32
ip prefix-list SHAM_LINK_ENDPOINTS permit 10.19.19.19/32
!
ipv6 prefix-list SHAM_LINK_ENDPOINTS permit 2001::2/128
ipv6 prefix-list SHAM_LINK_ENDPOINTS permit 2001::19/128
!
route-map BGPV4_TO_OSPF deny 10
 match ip addr prefix SHAM_LINK_ENDPOINTS 
route-map BGPV4_TO_OSPF permit 20
!
route-map BGPV6_TO_OSPF deny 10
 match ipv6 addr prefix SHAM_LINK_ENDPOINTS 
route-map BGPV6_TO_OSPF permit 20
!
router ospf 100 vrf A
 redistribute bgp 100 route-map BGPV4_TO_OSPF 
 area 0 sham-link 10.2.2.2 10.19.19.19
!
router ospfv3 100
 add ipv6 uni vrf A
   redistribute bgp 100 route-map BGPV6_TO_OSPF 
   area 0 sham-link 2001::2 2001::19

#XR1
int lo1
 vrf A
 ip add 10.19.19.19 255.255.255.255
 ipv6 add 2001::19/128
!
prefix-set SHAM_LINK_ENDPOINTS_V4
  10.2.2.2/32,
  10.19.19.19/32
end-set
!
prefix-set SHAM_LINK_ENDPOINTS_V6
  2001::2/128,
  2001::19/128
end-set
!
route-policy BGPV4_TO_OSPF
  if destination in SHAM_LINK_ENDPOINTS_V4 then
    drop
  endif
  pass
end-policy
!
route-policy BGPV6_TO_OSPF
  if destination in SHAM_LINK_ENDPOINTS_V6 then
    drop
  endif
  pass
end-policy
!
router bgp 100
 vrf A
  add ipv4 uni
   network 10.19.19.19/32
  !
  add ipv6 uni
   network 2001::19/128
!
router ospf 100
 vrf A
  redistribute bgp 100 route-policy BGPV4_TO_OSPF
  area 0
   sham-link 10.19.19.19 10.2.2.2
!
router ospfv3 100
 vrf A
  redistribute bgp 100 route-policy BGPV6_TO_OSPF
  area 0
   sham-link 2001::19 2001::2

Explanation

Sham links are similar to OSPF virtual links, in that they allow you to extend an area over another OSPF area. Virtual links allow you to extend area 0 over a transit area. But sham links are used to extend any OSPF area over the MPLS OSPF “super backbone” area.

To configure a sham link, we first need to setup dedicated loopbacks on the two PEs.

#R2
int lo1
 vrf forwarding A
 ip add 10.2.2.2 255.255.255.255
 ipv6 add 2001::2/128

#XR1
int lo1
 vrf A
 ip add 10.19.19.19 255.255.255.255
 ipv6 add 2001::19/128

These must be advertised into BGP, but prevented from being redistributed into OSPF. The only purpose of these is to form the sham link. The PEs should never be allowed to learn a route to the remote PE’s sham link loopback via OSPF. The remote loopback must resolve via iBGP so that the MPLS label can be gleaned from the associated VPNv4/v6 route for each OSPF route.

#R2
router bgp 100
 add ipv4 uni vrf A
  network 10.2.2.2 mask 255.255.255.255
 !
 add ipv6 uni vrf A
  network 2001::2/128
!
ip prefix-list SHAM_LINK_ENDPOINTS permit 10.2.2.2/32
ip prefix-list SHAM_LINK_ENDPOINTS permit 10.19.19.19/32
!
ipv6 prefix-list SHAM_LINK_ENDPOINTS permit 2001::2/128
ipv6 prefix-list SHAM_LINK_ENDPOINTS permit 2001::19/128
!
route-map BGPV4_TO_OSPF deny 10
 match ip addr prefix SHAM_LINK_ENDPOINTS 
route-map BGPV4_TO_OSPF permit 20
!
route-map BGPV6_TO_OSPF deny 10
 match ipv6 addr prefix SHAM_LINK_ENDPOINTS 
route-map BGPV6_TO_OSPF permit 20
!
router ospf 100 vrf A
 redistribute bgp 100 route-map BGPV4_TO_OSPF 
!
router ospfv3 100
 add ipv6 uni vrf A
   redistribute bgp 100 route-map BGPV6_TO_OSPF 
#XR1
prefix-set SHAM_LINK_ENDPOINTS_V4
  10.2.2.2/32,
  10.19.19.19/32
end-set
!
prefix-set SHAM_LINK_ENDPOINTS_V6
  2001::2/128,
  2001::19/128
end-set
!
route-policy BGPV4_TO_OSPF
  if destination in SHAM_LINK_ENDPOINTS_V4 then
    drop
  endif
  pass
end-policy
!
route-policy BGPV6_TO_OSPF
  if destination in SHAM_LINK_ENDPOINTS_V6 then
    drop
  endif
  pass
end-policy
!
router bgp 100
 vrf A
  add ipv4 uni
   network 10.19.19.19/32
  add ipv6 uni
   network 2001::19/128
!
router ospf 100
 vrf A
  redistribute bgp 100 route-policy BGPV4_TO_OSPF
!
router ospfv3 100
 vrf A
  redistribute bgp 100 route-policy BGPV6_TO_OSPF

Finally, once the PEs have reachability to each other’s loopback, we can simply form the sham link.

#R2
router ospf 100 vrf A
 area 0 sham-link 10.2.2.2 10.19.19.19
!
router ospfv3 100
 add ipv6 uni vrf A
   area 0 sham-link 2001::2 2001::19

#XR1
router ospf 100
 vrf A
  area 0
   sham-link 10.19.19.19 10.2.2.2
!
router ospfv3 100
 vrf A
  area 0
   sham-link 2001::19 2001::2

On an IOS-XE PE, the routes to the remote CE will appear via the sham link from the perpsective of OSPF. (SPF on the PE resolves the route using the sham link in the graph).

However, when installing into the RIB, the router knows to use the BGP nexthop for the sham link endpoint, instead of literally trying to forward traffic over the sham link. The MPLS service label needs to be derived from the BGP VPNv4 update sent by XR1.

The output states that it is redistributing this OSPF route into BGP, but this is not actually the case. Below, we can see that we only have the route via XR1 in the VPNv4 table. Interestingly, this route counts as rib failure because we are using the “OSPF” route via the sham link in the RIB. It gets a little confusing, but the end result is that traffic is properly labeled using the VPNv4 label.

A similar process happens on IOS-XR. The route to CE1 is known via OSPF through the sham link.

However, on IOS-XR, the router more logically installs the BGP route into the RIB instead of the OSPF route.

The same process happens for OSPFv3 on IOS-XE. The route to the remote CE is via the sham link.

But strangely, something is broken. This route is via Null0, directly connected.

I found that I could fix this by removing the include-connected keyword when redistributing OSPFv3 into BGP.

#R2
router bgp 100
 add ipv6 uni vrf A
  no redistribute ospf 100 include-connected
  redistribute ospf 100

The issue appears to be that the route is learned by R2 via R1 first. Then for some reason, when it is learned through the sham link as well, it must be considered connected somehow. If the R1-XR2 link is shutdown, the problem on R2 goes away also.

IOS-XR’s behavior for OSPFv3 is the same as OSPFv2 and is not worth showing.

Overall, the goal of the sham link is to produce an adjacency in the given OSPF area in the customer’s OSPF network. The result is that routes can be learned via remote CEs as intra-area, because the graph on each remote site is connected via this sham link. We verify this in more depth in the following section.

Verification

You should see two new adjacencies on the PEs:

This causes LSAs originated by each CE to be flooded end-to-end. Because the LSAs are flooded over the sham link, the LSAs will appear in each CE’s LSDB.

Also notice above that the sham link runs as a demand-circuit. This is the reason for the DNA LSAs originated by XR1.

Traffic from R1 to XR2 will now prefer the lower-cost intra-area path over the MPLS WAN:

If one of the WAN circuits has a fault, the OSPF PE-CE adjacency will break, and traffic will failover to the backup link.

#R1
int gi1.12
 shut

This path is only used as a backup path due to the higher cost. And the higher cost only makes a difference because the MPLS WAN path is now intra-area as well, so the WAN path can be preferred over the direct backup link. (Without the sham link, the WAN path is inter-area and cannot be preferred over the intra-area backup link).

Further Reading

https://datatracker.ietf.org/doc/html/rfc4577