CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Create a template service
  • Answer
  • Explanation
  • Demonstrating Debugging
  • Improving the service
  1. Labs
  2. NSO

Advanced NSO Template Service #2

Load blank.ssh.enabled.cfg

#IOS-XE
config replace flash:blank.ssh.enabled.cfg
 
#IOS-XR
configure
load bootflash:blank.ssh.enabled.cfg
commit replace

Create a template service

Create a template service that configures a basic EVPN-VPWS. The template should take the following variables:

  • Instance #

  • Service # (source and target number)

  • Name

  • PE-CE link (two)

    • PE device name

    • interface type

    • interface number

    • vlan ID

  • Handle both IOS-XE and IOS-XR PEs

If you are starting this lab without doing the previous one, you can add all devices to NSO with this config:

Initial NSO Configuration
devices global-settings ssh-algorithms public-key [ ssh-ed25519 ecdsa-sha2-nistp256 ecdsa-sha2-nistp384 ecdsa-sha2-nistp521 rsa-sha2-512 rsa-sha2-256 ssh-rsa ssh-dss  ]

devices device r1
address 10.254.0.101
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked

devices device r2
address 10.254.0.102
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r3
address 10.254.0.103
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r4
address 10.254.0.104
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r5
address 10.254.0.105
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r6
address 10.254.0.106
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r7
address 10.254.0.107
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r8
address 10.254.0.108
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r9
address 10.254.0.109
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device r10
address 10.254.0.110
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device xr1
address 10.254.0.111
authgroup default
device-type cli ned-id cisco-iosxr-cli-7.49
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device xr2
address 10.254.0.112
authgroup default
device-type cli ned-id cisco-iosxr-cli-7.49
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device xr3
address 10.254.0.113
authgroup default
device-type cli ned-id cisco-iosxr-cli-7.49
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device xr4
address 10.254.0.114
authgroup default
device-type cli ned-id cisco-iosxr-cli-7.49
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked


devices device-group XE
device-name r1
device-name r2
device-name r3
device-name r4
device-name r5
device-name r6
device-name r7
device-name r8
device-name r9
device-name r10

devices device-group XR
device-name xr1
device-name xr2
device-name xr3
device-name xr4

devices device-group ALL
device-group XE
device-group XR

Answer

Create the vpws service-skeleton:

ncs-make-package --service-skeleton template vpws

Create a YANG module as follows:

module vpws {
  namespace "http://com/example/vpws";
  prefix vpws;

  import ietf-inet-types {
    prefix inet;
  }
  import tailf-ncs {
    prefix ncs;
  }

  list vpws {
    key name;

    uses ncs:service-data;
    ncs:servicepoint "vpws";

    leaf name {
      type string;
    }

    leaf instance_id {
      type uint16;
    }

    leaf service_id {
      type uint16;
    }

    list link {
      key id;

      leaf device {
        type leafref {
          path "/ncs:devices/ncs:device/ncs:name";
        }
      }

      leaf id {
        type string;
      }

      leaf vlan_id {
        type uint16;
      }

      leaf interface_type {

        type enumeration {
          enum GigabitEthernet;
          enum TenGigabitEthernet;
        }
      }

      leaf interface_number {
        type string;
     }
    }
  }
}

Above, the VPWS service is identified by the leaf “name” (using the key statement). The VPWS service has an instance_id, service_id, and a list of links. Each link is identified by the link ID, and contains a device, vlan_id, interface_type, and interface_number.

Notice that we can restrict the options for an interface_type by using an enumeration. In the CLI, we are only allowed to enter a type that was pre-specified as an enum:

Next, we create a template. I created this by generating the config in NCS and doing a dry-run commit outputted to XML.

<config-template xmlns="http://tail-f.com/ns/config/1.0"
                 servicepoint="vpws">
  <devices xmlns="http://tail-f.com/ns/ncs">
    <?foreach {link}?>
    <device>
      <name>{device}</name>
      <config>
           <interface xmlns="urn:ios">
            <? if {interface_type='GigabitEthernet'}?>
                     <GigabitEthernet>
                       <name>{interface_number}</name>
                       <service>
                         <instance>
                           <id>{vlan_id}</id>
                           <ethernet/>
                           <encapsulation>
                             <dot1q>
                               <id>{vlan_id}</id>
                             </dot1q>
                           </encapsulation>
                           <rewrite>
                             <ingress>
                               <tag>
                                 <pop>1</pop>
                                 <mode>symmetric</mode>
                               </tag>
                             </ingress>
                           </rewrite>
                         </instance>
                       </service>
                     </GigabitEthernet>
                   <?end?>
                   </interface>
                    <interface xmlns="http://tail-f.com/ned/cisco-ios-xr">
                     <? if {interface_type='GigabitEthernet'}?>
                       <GigabitEthernet-subinterface>
                       <GigabitEthernet>
                         <id>{interface_number}.{vlan_id}</id>
                         <mode>l2transport</mode>
                         <encapsulation>
                           <dot1q>
                             <vlan-id>{vlan_id}</vlan-id>
                           </dot1q>
                         </encapsulation>
                         <rewrite>
                           <ingress>
                             <tag>
                               <pop>1</pop>
                               <mode>symmetric</mode>
                             </tag>
                           </ingress>
                         </rewrite>
                       </GigabitEthernet>
                     </GigabitEthernet-subinterface>
                   <?end?>
                   </interface>
                   <l2vpn-evpn xmlns="urn:ios">
                     <l2vpn>
                       <evpn>
                         <instance>
                           <id>{string(/instance_id)}</id>
                           <point-to-point/>
                           <vpws>
                             <context>
                               <name>{string(/name)}</name>
                               <service>
                                 <target>{string(/service_id)}</target>
                                 <source>{string(/service_id)}</source>
                               </service>
                               <member>
                                 <interface>{interface_type}{interface_number}</interface>
                                 <service-instance>{vlan_id}</service-instance>
                               </member>
                             </context>
                           </vpws>
                         </instance>
                       </evpn>
                     </l2vpn>
                   </l2vpn-evpn>
                    <l2vpn xmlns="http://tail-f.com/ned/cisco-ios-xr">
                     <xconnect>
                       <group>
                         <name>VPWS</name>
                         <p2p>
                           <name>{string(/name)}</name>
                           <interface>
                             <name>{interface_type}{interface_number}.{vlan_id}</name>
                           </interface>
                           <neighbor-evpn>
                             <neighbor>
                               <evpn>
                                 <evi>{string(/instance_id)}</evi>
                                 <target>{string(/service_id)}</target>
                                 <source>{string(/service_id)}</source>
                               </evpn>
                             </neighbor>
                           </neighbor-evpn>
                         </p2p>
                       </group>
                     </xconnect>
                   </l2vpn>
      </config>
    </device>
    <?end?>
  </devices>
</config-template>

Explanation

To accomplish this service, we must handle several things:

  • Multiple links

  • IOS-XE and IOS-XR config

  • Multiple interface types (i.e. GigabitEthernet and TenGigabitEthernet)

To handle multiple links, we simply iterate over every link in the list called “link.” This is done using NSO XML template processing instructions:

<config-template xmlns="http://tail-f.com/ns/config/1.0"
                 servicepoint="vpws">
  <devices xmlns="http://tail-f.com/ns/ncs">
    <?foreach {link}?>
    <....>
    <?end?>
  </devices>
</config-template>

To iterate over each item in a list, you use <?foreach {Xpath}?>.

We can also use processing instructions such as if/else statements. This can be used to handle multiple interface types. The issue is that we can’t use an XPath for the XML tag. For example, we cannot do this:

      <config>
           <interface xmlns="urn:ios">
                 <{interface_type}>
                       <name>{interface_number}</name>

Instead, we can do an if statement. In this template, I do not add TenGig support for brevity. But it can easily be added using another corresponding if statement.

      <config>
         <interface xmlns="urn:ios">
            <? if {interface_type='GigabitEthernet'}?>
                     <GigabitEthernet>
                       <name>{interface_number}</name>

In general, XPath statements are always placed in curly braces {}. There is an important thing to realize about XPath statements though. When these evaluate to a node, the XPath context for the template will change to that node. This can break your template in unexpected ways.

Notice that the l2vpn config uses {string(path)} syntax instead of just {path}. This is used because when the XPath statement resolves to a value, the XPath context does not change. If we don’t use this, the XPath context will change from root/link to just root/ when we get the /instance_id value. Then when we go to reference the interface_type later, we cannot find it under the root. We have lost our root/link context.

                   <l2vpn-evpn xmlns="urn:ios">
                     <l2vpn>
                       <evpn>
                         <instance>
                           <id>{string(/instance_id)}</id>
                           <point-to-point/>
                           <vpws>
                             <context>
                               <name>{string(/name)}</name>
                               <service>
                                 <target>{string(/service_id)}</target>
                                 <source>{string(/service_id)}</source>
                               </service>
                               <member>
                                 <interface>{interface_type}{interface_number}</interface>
                                 <service-instance>{vlan_id}</service-instance>
                               </member>
                             </context>
                           </vpws>
                         </instance>
                       </evpn>
                     </l2vpn>

Luckily we can find these issues out by debugging during a commit.

Demonstrating Debugging

Let’s change these XPath statements back to the absolute nodes:

                  <l2vpn-evpn xmlns="urn:ios">
                     <l2vpn>
                       <evpn>
                         <instance>
                           <id>{/instance_id}</id>
                           <point-to-point/>
                           <vpws>
                             <context>
                               <name>{/name}</name>
                               <service>
                                 <target>{/service_id}</target>
                                 <source>{/service_id}</source>
                               </service>
                               <member>
                                 <interface>{interface_type}{interface_number}</interface>
                                 <service-instance>{vlan_id}</service-instance>
                               </member>
                             </context>
                           </vpws>
                         </instance>
                       </evpn>
                     </l2vpn>
                   </l2vpn-evpn>

We make the package again and reload packages in NCS.

I then apply a new VPWS service:

vpws ONE
instance_id 100
service_id  101
link 1
device r1
vlan_id 100
interface_type GigabitEthernet
interface_number 1

However, it doesn’t look like it is working as expected. Where’s my interface as a member of the VPWS?

If I pipe the commit dry-run to debug template, I can see this context change happening, which is breaking my template.

First we start in the root context node, which is /vpws[name=’ONE’]. Then we iterate over the foreach, which puts our contex as the first link:

The context stays as-is, until we process a root node. We process /instance_id, which successfully finds the value. But notice that the next evaluation is now in the root context node. We’ve left our link context.

Then when we go to process the interface_type, it cannot be found at the root context:

As a side note, using this debug we can see how the template works for both XE and XR. NCS only generates config for the namespace that a device supports. IOS-XE does not support the ios-xr namespace, so NCS knows not to generate that config:

To fix the XPath context issue, we have a few options:

  • Use string() to evaluate a value instead of a node. This prevents a context switch.

  • Saving and switching context.

Using a string() is probably the easiest method. But let’s demonstrate the use switching contexts. First we save the context under the current link:

<config-template xmlns="http://tail-f.com/ns/config/1.0"
                 servicepoint="vpws">
  <devices xmlns="http://tail-f.com/ns/ncs">
    <?foreach {link}?>
    <?save-context current-link-context?>
    <device>

Then we set the context back to this when we move from the root-level leafs to the link-level leafs again:

<l2vpn-evpn xmlns="urn:ios">
                     <l2vpn>
                       <evpn>
                         <instance>
                           <id>{/instance_id}</id>
                           <point-to-point/>
                           <vpws>
                             <context>
                               <name>{/name}</name>
                               <service>
                                 <target>{/service_id}</target>
                                 <source>{/service_id}</source>
                               </service>
                               <member>
      <---- Here ---->          <?switch-context current-link-context?>
                                 <interface>{interface_type}{interface_number}</interface>
                                 <service-instance>{vlan_id}</service-instance>
                               </member>

In the debug, we can see that this time the context switches back to the link context before we evaluate the link-specific leafs.

Improving the service

I’ve re-written this and made some improvements. First, the YANG module requires that the VPWS has two PEs. This breaks for a VPWS that has two interfaces on the same PE though. However, in that case, we don’t use an EVPN EVI anyways. So this service is only used for a VPWS between two separate PEs.

There is also a restriction on the VLAN ID (0-4094) and interface number (0/0/0/X).

module vpws-new {
  namespace "http://com/example/vpwsnew";
  prefix vpws-new;

  import ietf-inet-types {
    prefix inet;
  }
  import tailf-ncs {
    prefix ncs;
  }

  list vpws-new {
    must "count(pe-device) = 2" {
      error-message "Must have two PEs for the service";
    }
    key name;

    uses ncs:service-data;
    ncs:servicepoint "vpws-new";

    leaf name {
      type string;
    }

    list pe-device {
      key device-name;
      leaf device-name {
        type leafref {
          path "/ncs:devices/ncs:device/ncs:name";
        }
      }
      container access-circuit {
        leaf interface-type {
          type enumeration {
            enum GigabitEthernet;
          }
        }
        leaf interface-num {
          type string {
            pattern "0/0/0/[0-9]*";
          }
        }
        leaf vlan {
          type uint16 {
            range "0..4094";
          }
        }
      }
    }

    leaf evi-num {
      type uint16;
    }

  }
}

The XML template sets variables at the beginning when we are still at the root node context, to prevent the need to worry about switching contexts.

<config-template xmlns="http://tail-f.com/ns/config/1.0"
                 servicepoint="vpws-new">
  <?set EVPN_NAME = {name} ?>
  <?set EVPN_EVI = {evi-num} ?>
  <devices xmlns="http://tail-f.com/ns/ncs">
   <?foreach {pe-device} ?>
    <device>
      <name>{device-name}</name>
      <config>
                   <interface xmlns="http://tail-f.com/ned/cisco-ios-xr">
                     <GigabitEthernet-subinterface>
                       <GigabitEthernet>
                         <id>{access-circuit/interface-num}.{access-circuit/vlan}</id>
                         <mode>l2transport</mode>
                         <encapsulation>
                           <dot1q>
                             <vlan-id>{vlan}</vlan-id>
                           </dot1q>
                         </encapsulation>
                         <rewrite>
                           <ingress>
                             <tag>
                               <pop>1</pop>
                               <mode>symmetric</mode>
                             </tag>
                           </ingress>
                         </rewrite>
                       </GigabitEthernet>
                     </GigabitEthernet-subinterface>
                   </interface>
                   <l2vpn xmlns="http://tail-f.com/ned/cisco-ios-xr">
                     <xconnect>
                       <group>
                         <name>VPWS</name>
                         <p2p>
                           <name>{$EVPN_NAME}</name>
                            <interface>
                             <name>GigabitEthernet{access-circuit/interface-num}.{access-circuit/vlan}</name>
                           </interface>
                           <neighbor-evpn>
                             <neighbor>
                               <evpn>
                                 <evi>{$EVPN_EVI}</evi>
                                 <target>{$EVPN_EVI}</target>
                                 <source>{$EVPN_EVI}</source>
                               </evpn>
                             </neighbor>
                           </neighbor-evpn>
                         </p2p>
                       </group>
                     </xconnect>
                   </l2vpn>
      </config>
    </device>
   <?end?>
  </devices>
</config-template>
PreviousAdvanced NSO Template ServiceNextNSO Template vs. Template Service

Last updated 2 months ago