CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation/Verification
  • A note on IOS-XE and VPNv4/VPNv6
  1. Labs
  2. BGP

DMZ Link BW Lab1

PreviousProvider Communities (XRv)NextDMZ Link BW Lab2

Last updated 2 months ago

Topology: russo-spv4

Load bgp-dmz-bw.init.cfg

#R1-R10
config replace flash:bgp-dmz-bw.init.cfg

#XR11-14
configure
load bootflash:bgp-dmz-bw.init.cfg
commit replace
y

The core, BGP, etc, is all pre-configured.

Configure DMZ-link bandwidth for AS 137 as follows:

  • Traffic from CSR1 destined for prefixes in 2.128.0.0/16 is load-shared in a 5:3:8 ratio to CSR6, CSR7, XR12

  • Traffic from CSR1 destined for prefixes in 2.129.0.0/16 is load-shared in a 5:3:16 ratio to CSR6, CSR7, XR12

  • All IPv6 prefixes advertised by CSR2 should be load shared in a 5:3:24 ratio from CSR1 to CSR6, CSR7, XR12

All of these prefixes are advertised by CSR2.

Answer

#R6
int gi2.546
 bandwidth 5000
!
router bgp 137
 address-family ipv4
  neighbor 10.4.6.4 dmzlink-bw
  neighbor 137.0.0.1 send-community both
 address-family ipv6
  neighbor 137.0.0.1 send-community both
  neighbor FD00:10:4:6::4 dmzlink-bw

#R7
interface GigabitEthernet2.547
 bandwidth 3000
!
interface GigabitEthernet2.571
 bandwidth 16000
!
router bgp 137
 address-family ipv4
  neighbor 10.4.7.4 dmzlink-bw
  neighbor 10.7.11.11 dmzlink-bw
  neighbor 137.0.0.1 send-community both
address-family ipv6
  neighbor 137.0.0.1 send-community both
  neighbor FD00:10:4:7::4 dmzlink-bw
  neighbor FD00:10:7:11::11 dmzlink-bw

#XR12
int GigabitEthernet0/0/0/0.512
 bandwidth 192
!
route-policy SET_DMZ_BW
  if destination in (2.128.0.0/16 le 24) then
    set extcommunity bandwidth (137:1000)
  elseif destination in (2.129.0.0/16 le 24) then
    set extcommunity bandwidth (137:2000)
  endif
  pass
end-policy
!
router bgp 137
 neighbor 10.11.12.11
  remote-as 173
  address-family ipv4 unicast
   route-policy SET_DMZ_BW in
 !
 neighbor fd00:10:11:12::11
  dmz-link-bandwidth

#R1
router bgp 137
 address-family ipv4
  bgp dmzlink-bw
  maximum-paths ibgp 4
 address-family ipv6
  bgp dmzlink-bw
  maximum-paths ibgp 4

Explanation/Verification

On IOS-XE, we enable use of the dmzlink-bw feature for UCMP on a router using the command “bgp dmzlink-bw” under the address-family. In this lab, this command is only needed on R1.

#R1
router bgp 137
 address-family ipv4
  bgp dmzlink-bw
  maximum-paths ibgp 4
 address-family ipv6
  bgp dmzlink-bw
  maximum-paths ibgp 4

We enable the function of copying the link’s bandwidth into a bandwidth load-balancing extcommunity using the command “dmzlink-bw” on a neighbor. R6 and R7 require this.

#R6
int gi2.546
 bandwidth 5000
!
router bgp 137
 address-family ipv4
  neighbor 10.4.6.4 dmzlink-bw
 address-family ipv6
  neighbor FD00:10:4:6::4 dmzlink-bw

#R7
interface GigabitEthernet2.547
 bandwidth 3000
!
interface GigabitEthernet2.571
 bandwidth 16000
!
router bgp 137
 address-family ipv4
  neighbor 10.4.7.4 dmzlink-bw
  neighbor 10.7.11.11 dmzlink-bw
address-family ipv6
  neighbor FD00:10:4:7::4 dmzlink-bw
  neighbor FD00:10:7:11::11 dmzlink-bw

Note above that we set the bandwidth for the R7-XR11 link, but these paths are never considered a best path. R7 will always prefer the path via R4 due to “bgp bestpath compare-routerid.” This disables the oldest-eBGP-route bestpath selection step. This is why we will always see a traffic share of 3 for R7 instead of 16.

Additionally on IOS-XE, we must send-community to our iBGP peers. This is enabled by deafult on IOS-XR for iBGP peers.

#R6
router bgp 137
 address-family ipv4
  neighbor 137.0.0.1 send-community both
 address-family ipv6
  neighbor 137.0.0.1 send-community both

#R7
router bgp 137
 address-family ipv4
  neighbor 10.4.7.4 dmzlink-bw
  neighbor 10.7.11.11 dmzlink-bw
address-family ipv6
  neighbor FD00:10:4:7::4 dmzlink-bw
  neighbor FD00:10:7:11::11 dmzlink-bw

On IOS-XE, the link bandwidth is copied into the extcommunity value in kilobytes instead of kilobits. Notice that the link bandwidth for R6-R4 is in bits but the extcommunity is in bytes.

IOS-XE appears to not adhere to the standard when this value is placed in the extcommunity. The value is advertised as a link bandwidth of 625, which wireshark interprets as bytes per second, or 0.006 Mbps. This presents interoperability issues between IOS-XE & IOS-XR.

IOS-XR

On IOS-XR, we never have to enable “dmzlink-bw” at an address-family level. We simply associate the command with a neighbor to copy the link bandwidth into the extcommunity attribute.

#XR12
int GigabitEthernet0/0/0/0.512
 bandwidth 192
!
router bgp 137
 neighbor fd00:10:11:12::11
  dmz-link-bandwidth

IOS-XR appears to adhere to the standard, where the value placed in the extcommunity is bytes per second. The value above is 192 kilobits per second, which is 192000 bits, or 24000 bytes. The value 24000 is placed in the extcommunity field. IOS-XE interprets this as 24000 kilobits. So to allow R1 to “correctly” use 24kbps, we had to change the bandwidth on IOS-XR to 192kbps. This demonstrates the interoperability issues for DMZ link-BW between IOS-XE and IOS-XR.

IOS-XR also allows us to set the extcommunity explicitly using an RPL. This allowed us to signal a different value for certain prefixes in this lab. XR12 sets the value to <ASN>:1000 and <ASN>:2000 depending on the received prefix. XR12 believes this is bytes per second, which would be 8Kbps and 16Kbps. XR12 displays the Kbps number in the show output. Quite confusing! (However, this makes IOS-XR more intuitive, because in general the link bandwidth (kbps) will be shown in the BGP output (kbps)).

#XR12
route-policy SET_DMZ_BW
  if destination in (2.128.0.0/16 le 24) then
    set extcommunity bandwidth (137:1000)
  elseif destination in (2.129.0.0/16 le 24) then
    set extcommunity bandwidth (137:2000)
  endif
  pass
end-policy
!
router bgp 137
 neighbor 10.11.12.11
  remote-as 173
  address-family ipv4 unicast
   route-policy SET_DMZ_BW in

When XR12 sends these paths to R1, R1 will interpret it as 1000kbps and 2000kbps, instead of 1000 bytes/sec and 2000 bytes/sec.

This allows R1 to achieve the ratio of load balancing we are looking for.

A note on IOS-XE and VPNv4/VPNv6

On IOS-XE, you cannot do DMZ link-BW load sharing for iBGP-learned paths for a VPN AF.

R1(config-router-af)#maximum-paths ?
  <1-32>  Number of paths

Since you can do UCMP for eBGP learned paths, we can test this on R7.

#R7
router bgp 137
 add vpnv4
  bgp dmzlink-bw
  maximum-paths 2
  neighbor 10.4.7.4 dmzlink-bw
  neighbor 10.7.11.11 dmzlink-bw

R7 is doing Inter-AS option B, so there is no local VRF table. We can instead look at the LFIB for verification that traffic is load shared.

Apparently there is a 1:1 ratio of load sharing, so this is not really working correctly. This is what Nick Russo found as well.