CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Verification
  1. Labs
  2. MPLS-TE

One-Hop Auto-Tunnels

Load flash:mpls.te.onehop.init.cfg

#IOS-XE
config replace flash:mpls.te.onehop.init.cfg

#IOS-XR
configure
load bootflash:mpls.te.onehop.init.cfg
commit replace
y

Currently the network is fully operational with LDP enabled everywhere. However, the operator is concerned about outages due to link failures in the paths between CSR8 and XRv11. This includes routers R8, R9, R10, R6, XR12, and XR11.

Using MPLS-TE auto-tunnels, enable onehop tunnels and fast-reroute on these nodes. This will allow the operator to dynamically use MPLS-TE’s FRR capabilities without having to deploy a complex full mesh of TE tunnels. It also saves the operator from having to upgrade their equipment to run SR.

Answer

#CSR6, CSR8, CSR9, CSR10
mpls traffic-eng tunnels
!
mpls traffic-eng auto-tunnel primary onehop
mpls traffic-eng auto-tunnel primary config mpls ip
mpls traffic-eng auto-tunnel backup
!
router isis 132
 mpls traffic-eng router-id lo0
 mpls traffic-eng level-2

#CSR6
int GigabitEthernet2.568
 mpls traffic-eng tunnels
int GigabitEthernet2.569
 mpls traffic-eng tunnels
int GigabitEthernet2.562
 mpls traffic-eng tunnels
int GigabitEthernet2.560
 mpls traffic-eng tunnels

#CSR8
int GigabitEthernet2.568
 mpls traffic-eng tunnels
int GigabitEthernet2.589
 mpls traffic-eng tunnels

#CSR9
int GigabitEthernet2.589
 mpls traffic-eng tunnels
int GigabitEthernet2.569
 mpls traffic-eng tunnels
int GigabitEthernet2.590
 mpls traffic-eng tunnels
int GigabitEthernet2.592
 mpls traffic-eng tunnels

#CSR10
int GigabitEthernet2.560
 mpls traffic-eng tunnels
int GigabitEthernet2.590
 mpls traffic-eng tunnels
int GigabitEthernet2.501
 mpls traffic-eng tunnels
int GigabitEthernet2.502
 mpls traffic-eng tunnels

#XR11
ipv4 unnumbered mpls traffic-eng loopback0
!
router isis 132
 address-family ipv4 unicast
  mpls traffic-eng level-2-only
  mpls traffic-eng router-id Loopback0
 !
!
mpls traffic-eng
 interface GigabitEthernet0/0/0/0.501
  auto-tunnel backup
  !
 !
 interface GigabitEthernet0/0/0/0.512
  auto-tunnel backup
  !
 !
 auto-tunnel mesh
  group 10
   onehop
   attribute-set ONEHOP_ATTRS
  !
  tunnel-id min 9990 max 9999
 !
 auto-tunnel backup
  tunnel-id min 10000 max 10999
 !
 attribute-set auto-mesh ONEHOP_ATTRS
  autoroute announce
  fast-reroute
!
mpls ldp
 int tunnel-te9990
 int tunnel-te9991

#XR12
ipv4 unnumbered mpls traffic-eng loopback0
!
router isis 132
 address-family ipv4 unicast
  mpls traffic-eng level-2-only
  mpls traffic-eng router-id Loopback0
 !
!
mpls traffic-eng
 interface GigabitEthernet0/0/0/0.502
  auto-tunnel backup
  !
 !
 interface GigabitEthernet0/0/0/0.512
  auto-tunnel backup
  !
 !
 interface GigabitEthernet0/0/0/0.562
  auto-tunnel backup
  !
 !
 interface GigabitEthernet0/0/0/0.592
  auto-tunnel backup
 !
 auto-tunnel mesh
  group 10
   onehop
   attribute-set ONEHOP_ATTRS
  !
  tunnel-id min 9990 max 9999
 !
 auto-tunnel backup
  tunnel-id min 10000 max 10999
 !
 attribute-set auto-mesh ONEHOP_ATTRS
  autoroute announce
  fast-reroute
!
mpls ldp
 int tunnel-te9990
 int tunnel-te9991
 int tunnel-te9992
 int tunnel-te9993

Explanation

Onehop primary auto-tunnels are a useful feature for implementing MPLS-TE FRR functionality without actually using a mesh of TE tunnels for traffic steering. MPLS-TE is simply used for its FRR capability.

The idea is that each router automatically forms a onehop tunnel with each directly connected neighbor. Every tunnel will simply have an outgoing label of imp-null. However, the power of this is that you can now protect this tunnel using auto-tunnel backup. The routers will only create NHOP tunnels (there is no NNHOP with a onehop tunnel), so only link-protection is achieved.

You might be thinking - what is the difference between this and just doing basic IP FRR using LFA? I believe the big difference is that you can achieve 100% link protection, because an explicit path can be signaled even if the underlying IGP backup path is not loop-free.

Let’s examine this on CSR8. It has four tunnels for which it is a headend: two that are primary onehop tunnels, and two that are backup NHOP tunnels.

Let’s examine the tunnels to CSR6. The first, primary onehop tunnel, simply has an explicit-path which includes the outgoing link to CSR6.

We can see the derived-config of this onehop auto-tunnel. Notice that FRR is enabeld, no bandwidth is reserved, and autoroute is enabled. As far as I know, this can not be changed. If you wanted to change this, I believe you would have to use the auto-tunnel mesh feature and manually specify your nexthops as your directly connected neighbors in an ACL.

The backup tunnel that protects this onehop tunnel is shown below:

Because this is a onehop tunnel, the router knows not to try to attempt to form a node-protecting backup tunnel.

Let’s now get into the configuration. On IOS-XE this is very straightforward. We enable the feature with a single command. We also must enable tLDP sessions so that LDP labels can be learned over these tunnels and pushed onto the stack when forwarding over these tunnels.

#IOS-XE
mpls traffic-eng auto-tunnel primary onehop
mpls traffic-eng auto-tunnel primary config mpls ip

Additional features that can be configured are very similar to backup auto-tunnels, such as the unnumbered interface, timers, and tunnel range.

#IOS-XE
mpls traffic-eng auto-tunnel primary config unnumbered-interface Lo0
mpls traffic-eng auto-tunnel primary timers removal rerouted seconds
mpls traffic-eng auto-tunnel primary tunnel-num min 1000 max 1999

Remember to also enable MPLS-TE for the IGP and all interfaces. A TED needs to be built in order for the onehop tunnels to come up. But RSVP bandwidth does not need to be allocated for these onehop tunnels, so you do not need to explicitly enable RSVP on each interface. (RSVP is enabled by default by the mpls traffic-eng tunnels command under the interface. ip rsvp bandwidth is only needed to define the available bandwidth. Without this, a value of zero bandwidth is advertised into the IGP.)

Configuration on IOS-XR is much more complex. First, the onehop feature is hidden within the auto-mesh configuration. You also must specify the tunnel range, unlike IOS-XE. Additionally, we must specify options using an attribute-set. IOS-XE automatically enables autoroute and fast-reroute on the onehop tunnels, but this is not the case on IOS-XR. Finally, you must also remember to set the unnumbered interface globally!

#IOS-XR
ipv4 unnumbered mpls traffic-eng loopback0
!
mpls traffic-eng
 auto-tunnel mesh
  group 10
   onehop
   attribute-set ONEHOP_ATTRS
  !
  tunnel-id min 9990 max 9999
 !
 attribute-set auto-mesh ONEHOP_ATTRS
  autoroute announce
  fast-reroute

Additionally, there is no way to dynamically enable LDP on the onehop auto-tunnels on IOS-XR. You can manually specify each dynamically created interface under LDP, although this isn’t an ideal solution. But it works.

#XR12
mpls ldp
 int tunnel-te9990
 int tunnel-te9991
 int tunnel-te9992
 int tunnel-te9993

Finally, enabling backup auto-tunnels is the same as usual. You must specify the range manually and then activate the backup auto-tunnel per-interface.

#XR12
mpls traffic-eng
 interface GigabitEthernet0/0/0/0.502
  auto-tunnel backup
  !
 !
 interface GigabitEthernet0/0/0/0.512
  auto-tunnel backup
  !
 !
 interface GigabitEthernet0/0/0/0.562
  auto-tunnel backup
  !
 !
 interface GigabitEthernet0/0/0/0.592
  auto-tunnel backup
!
 auto-tunnel backup
  tunnel-id min 10000 max 10999

Verification

Let’s examine CSR9. We have four backup tunnels that are ready to protect four primary onehop auto-tunnels. There is one auto-tunnel for each directly connected neighbor: CSR8, CSR6, CSR10, and XR12.

Note that the order in which you apply the config might affect this. I activated the auto-tunnel features before activating MPLS-TE globally. This resulted in some backup-tunnels not working correctly. However, if you remove and re-add the feature, you should be able to get the output above.

Let’s enable RSVP Hellos between CSR9 and CSR10 and test failover.

#CSR9, CSR10
ip rsvp signalling hello
!
int Gi2.590
 ip rsvp signalling hello

We must also force traffic to take this path. To do this, we can lower the IGP cost of the CSR9-CSR10 link to 1.

#CSR9, CSR10
int Gi2.590
 isis metric 1

Now we can initiate an extended ping and watch for lost packets.

#XR13
ping 14.14.14.14 so lo0 repeat 100000

#CSR9
int Gi2.590
 shut

We see only one packet is lost. The backup tunnel on CSR10 will remain active indefinitely, however, the IGP will update routing on CSR10 to avoid this link now. So this backup tunnel is only used while the IGP is in the process of reconverging. The primary onehop tunnel uses an explicit-path that includes the link, so the onehop tunnel will fail to come back up until the link is restored. By default, the onehop primary auto-tunnel is never deleted. You can use the timer keyword to set how often the router checks for tunnels which can be deleted.

PreviousFull Mesh Dynamic Auto-TunnelsNextCBTS/PBTS

Last updated 2 months ago