CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • WRED
  • MDRR
  • Overhead Accounting
  • Priority Queues
  • SPI (Shared Policy Instance)
  • Shared policer buckets
  • Multiple QoS Policies
  • Child-Conform-Aware
  • Service-fragment
  • Flow-aware QoS
  1. Labs
  2. QoS

Notes - QoS on IOS-XR

PreviousMPLS QoS DesignNextNSO

Last updated 1 month ago

QoS on IOS-XR is very similar to IOS-XE. The MQC syntax is essentially the same. There are a few extra features which are available.

WRED

On IOS-XR, you can configure regular RED by using “random-detect default”

policy-map EX
 class class-default
  random-detect default

When using regular WRED, you can base it on DSCP, EXP, IPP, or CoS. For any of these cases, you must specify the values yourself. The platform does not provide defaults.

policy-map EX
 class class-default
  random-detect dscp af11,af21,af31,af41 140 packets 200 packets probability 10
  random-detect dscp af12,af22,af33,af44 120 packets 200 packets probability 10
  random-detect dscp af13,af22,af33,af44 100 packets 200 packets probability 10

MDRR

IOS-XR uses MDRR (modified deficit round robin) instead of CBWFQ. However, it essentially operates in the same manner, even though it doesn’t use the same weighted fair queuing algorithm. I believe as the user you will not know the difference. LLQ can still be used, which brings strict priority queuing to the MDRR scheduling.

Overhead Accounting

Overhead accounting is done on the interface as the policy-map is applied, not on the policy-map itself as in IOS-XE. On XRv I only have the options for using layer1, layer2, or turning off layer2 accounting.

RP/0/0/CPU0:XR1(config-if)#service-policy input 100M_SHAPE account ?
  layer1    Turn on l1 accounting
  layer2    Turn on l2 accounting
  nolayer2  Turn off l2 accounting

Priority Queues

On IOS-XR, 8 priority levels are supported. On IOS-XE, only 2 levels are supported.

On IOS-XR, you cannot police on the priority command like you can on IOS-XE. Instead you must configure a separate policer.

RP/0/0/CPU0:XR1(config-pmap-c)#priority level 1 ?
  <cr>

policy-map EX
 class class-default
  priority level 1
  police rate 10 mbps

Note that on IOS-XE, the following configurations have two different meanings:

  • When the police rate is specified with the priority command, the queue can still use extra bandwidth when no congestion is present

  • When the police rate is specified separately, this queue can never go above the police rate

! Only police to 10M during congestion
policy-map EX1
 class class-default
  priority level 1 10000

! Police to 10M even when there is no congestion
policy-map EX2
 class class-default
  priority level 1
  police rate 10 m

SPI (Shared Policy Instance)

This is essentially the IOS-XR equivalent of IOS-XE’s service-group. You can apply an aggregate policy to multiple subinterfaces. All subinterfaces must belong to the same physical interface, just like on IOS-XE.

policy-map 100M_SHAPE
 class class-default
  shape average 100 mbps
!
interface GigabitEthernet0/0/0/0.100
 service-policy output 100M_SHAPE shared-policy-instance INSTANCE1
 ipv4 address 10.100.0.1 255.255.255.0
 encapsulation dot1q 100
!
interface GigabitEthernet0/0/0/0.200
 service-policy output 100M_SHAPE shared-policy-instance INSTANCE1
 ipv4 address 10.200.0.1 255.255.255.0
 encapsulation dot1q 200

Shared policer buckets

This feature allows you to share a single policer bucket among multiple classes. This seems to be a way to use a single policer rate for multiple classes within a single policy.

policy-map EX
 class X
  police bucket shared BUCKET1 rate 100 mbps
 !
 class Y
  police bucket referred BUCKET1

Multiple QoS Policies

This feature allows you to apply multiple QoS policies in the same direction. One policy is used for classification, and marks traffic with traffic-class. The second policy does queuing, and matches the traffic-class. The classification policy will execute first. The queuing policy executes second, matching on the traffic class field that was set by the classification policy, which selects the queue.

policy-map CLASSIFICATION
 class X
  set traffic-class 1
 class Y
  set traffic-class 2
!
policy-map QUEUING
 class TC1
  shape average 50 m
 class TC2
  shape average 100 M
!
int Gi0/0/0/0
 service-policy output CLASSIFICATION
 service-policy output QUEUING

The traffic-class tool does not appear to be very well documented. It is an internal marking mechanism similar to qos-group. But traffic-class is used for egress queuing, while qos-group is only used for marking(?).

A few things, qos-group matching on egress counts as a marking action and 
queuing and marking are not supported at the same time. On NCS5500 we have 
to apply different service-policy statements on the interface for queuing 
and for remarking actions. This means separate policy-maps  have to be created 
for marking and queuing respectively.

 

NCS5500 implements a different concept for marking. It is based on traffic-class 
and qos-group. On egress we match on these two parameters to remark traffic and 
to select queues.Traffic-class determines priority through the fabric.

 

While “match traffic-class” has to be used for queuing features “match qos-group” 
can only be used for marking.

This comment provides more clarity:

In an egress QoS policy on DNX platforms (NCS540, NCS560, NCS5k, NCS5500) you 
cannot match on packet header fields. You can only match on internal scope 
traffic-class or qos-group. Traffic has to be classified into a given traffic-class 
or qos-group in an ingress QoS policy. Match on a traffic-class if the action you 
want to apply is queuing. Match on qos-group if the action you want to apply is 
egress marking. 

Child-Conform-Aware

This feature makes the parent policy aware of the colors of traffic as marked by the child policy. This prevents conformed traffic from being dropped if it is mixed with exceeded traffic when presented to the parent policy.

policy-map PARENT
 class class-default
  police rate 100 m
   child-conform-aware
  service-policy CHILD
!
policy-map CHILD
 class X
  police rate 50 m
   conform-action set dscp default
 !
 class Y
  police rate 50 m
   conform-action set dscp default
   exceed-action set dscp cs1

In this scenario, there might be a total of 100m of conforming traffic presented to the parent policy, and excess traffic marked with cs1 over 100m. The parent policy needs to be aware of the markings the child policy is doing in order to drop the exceeded traffic and not the conforming traffic.

Service-fragment

This feature allows individual classes in separate policies that are attached to subinterfaces on the same physical interface, to use an aggregate policy on the main interface.

This diagram helps explain the feature:

The default-class present on policies assigned to each individual subinterface is associated with an aggregate policy assigned to the main physical interface.

policy-map X
 class class1
  fragment FRAG1
 class class2
!
policy-map Y
 class class1
  fragment FRAG1
 class class2
!
policy-map PHYS
 class class-default
  service-fragment FRAG1

int Gi0/0/0/0.100
 service-policy output X
int Gi0/0/0/0.200
 service-policy output Y
int Gi0/0/0/0
 service-policy PHYS

Flow-aware QoS

This feature allows the router to classify traffic into flows for the purpose of call admission control (CAC). For example, let’s say that you want to provide priority treatment to video conference calls, but police then at 5mbps. Let’s say each call is 1mbps. If more than 5 calls are present, all video callas will suffer. We want to do call admission control so that the 6th call is dropped instead.

policy-map X
 class video
  priority level 1
  admit cac local
   flow idle-timeout <seconds>
   flow rate 1 mbps
   rate 5 mbps

From:

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-7/qos/b-qos-cg-asr9k-77x.html
https://community.cisco.com/t5/xr-os-and-platforms/ncs-55a2-xr-6-6-qos/td-p/4111848