CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Verification
  • What happens if the link (max reservable BW) < (BC0+BC1)?
  1. Labs
  2. MPLS-TE

IETF DS-TE with MAM

PreviousTraditional DS-TENextIETF DS-TE with RDM

Last updated 2 months ago

Load mpls.te.base.config.with.ospf.cfg

#IOS-XE
config replace flash:mpls.te.base.config.with.ospf.cfg

#IOS-XR
configure
load bootflash:mpls.te.base.config.with.ospf.cfg
commit replace
y

Configure DS-TE in IETF mode so that the interfaces along the two bidirectional paths, CSR8-CSR6-XR12-XR11 and CSR8-CSR9-CSR10-XR11, have 100M BC0 bandwidth available and 10M BC1 bandwidth available, with 110M total bandwidth.

Configure three bidirectional TE tunnels between R8 and XR11 as follows:

  • One which requests 8M BC1 bandwidth at priority 0

  • One which requests 8M BC1 bandwidth at priority 7

  • One which requests 95M BC0 bandwidth at priority 7

Answer

#CSR8
mpls traffic-eng ds-te mode ietf
mpls traffic-eng ds-te bc-model mam
!
int GigabitEthernet2.568
 ip rsvp bandwidth mam max-reservable-bw 110000 bc0 100000 bc1 10000
int GigabitEthernet2.589
 ip rsvp bandwidth mam max-reservable-bw 110000 bc0 100000 bc1 10000

#CSR9
mpls traffic-eng ds-te mode ietf
mpls traffic-eng ds-te bc-model mam
!
int GigabitEthernet2.590
 ip rsvp bandwidth mam max-reservable-bw 110000 bc0 100000 bc1 10000
int GigabitEthernet2.589
 ip rsvp bandwidth mam max-reservable-bw 110000 bc0 100000 bc1 10000

#CSR10
mpls traffic-eng ds-te mode ietf
mpls traffic-eng ds-te bc-model mam
!
int GigabitEthernet2.590
 ip rsvp bandwidth mam max-reservable-bw 110000 bc0 100000 bc1 10000
int GigabitEthernet2.501
 ip rsvp bandwidth mam max-reservable-bw 110000 bc0 100000 bc1 10000

#CSR6
mpls traffic-eng ds-te mode ietf
mpls traffic-eng ds-te bc-model mam
!
int GigabitEthernet2.568
 ip rsvp bandwidth mam max-reservable-bw 110000 bc0 100000 bc1 10000
int GigabitEthernet2.562
 ip rsvp bandwidth mam max-reservable-bw 110000 bc0 100000 bc1 10000

#XR12
mpls traffic-eng
 ds-te mode ietf
 ds-te bc-model mam
!
rsvp
 int GigabitEthernet0/0/0/0.562
  bandwidth mam max-reservable-bw 110 mbps bc0 100 mbps bc1 10 mbps
 int GigabitEthernet0/0/0/0.512
  bandwidth mam max-reservable-bw 110 mbps bc0 100 mbps bc1 10 mbps

#XR11
mpls traffic-eng
 ds-te mode ietf
 ds-te bc-model mam
!
rsvp
 int GigabitEthernet0/0/0/0.501
  bandwidth mam max-reservable-bw 110 mbps bc0 100 mbps bc1 10 mbps
 int GigabitEthernet0/0/0/0.512
  bandwidth mam max-reservable-bw 110 mbps bc0 100 mbps bc1 10 mbps

#CSR8
int tun0
 description TUN1_TO_XR11
 tunn dest 11.11.11.11
 ip unn lo0
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng path-option 1 dynamic
 tunnel mpls traffic-eng bandwidth 8000 class-type 1
 tunnel mpls traffic-eng priority 0 0 
!
int tun1
 description TUN2_TO_XR11
 tunn dest 11.11.11.11
 ip unn lo0
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng path-option 1 dynamic
 tunnel mpls traffic-eng bandwidth 8000 class-type 1
 tunnel mpls traffic-eng priority 7 7
!
int tun2
 description TUN3_TO_XR11
 tunn dest 11.11.11.11
 ip unn lo0
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng path-option 1 dynamic
 tunnel mpls traffic-eng bandwidth 95000 class-type 0
 tunnel mpls traffic-eng priority 7 7

#XR11
int tunnel-te0
 dest 8.8.8.8
 ip unn lo0
 path-option 1 dynamic
 priority 0 0
 signalled-bandwidth 8000 class-type 1
!
int tunnel-te1
 dest 8.8.8.8
 ip unn lo0
 path-option 1 dynamic
 priority 7 7
 signalled-bandwidth 8000 class-type 1
!
int tunnel-te2
 dest 8.8.8.8
 ip unn lo0
 path-option 1 dynamic
 priority 7 7
 signalled-bandwidth 95000 class-type 0

Explanation

The IETF standardized DS-TE in 2008, after Cisco’s traditional DS-TE had already existed. The traditional DS-TE mode only supports two pools: a global pool and a sub-pool. The IETF mode adds support for more pools but with some additional complexity.

In the IETF mode, there are 8 class types (CT). Each CT corresponds to a BC (bandwidth constraint). So CT0=BC0, CT1=BC1, CT2=BC2, etc. The bandwidth constraint is the pool of bandwidth for the traffic class. Cisco only supports CT0 and CT1. CT0 maps to the global pool and CT1 maps to the sub pool in the IGP advertisement.

We must specify on all routers that they are using the IETF mode of DS-TE instead of the default “traditional” mode.

#IOS-XE
mpls traffic-eng ds-te mode ietf

#IOS-XR
mpls traffic-eng
 ds-te mode ietf

There is another layer of complexity: TE classes. A TE class is a CT and a priority value. For example, TE class 3 might be CT0 with priorty 5. There are 64 possible combinations of TE classes (8 CTs and 8 priority levels), but only up to 8 at a time can be defined in a network. Each router in the network must agree on the meaning of each TE class (through configuration). This allows the IGP to re-use what was previously the 8 priority levels of global bandwidth, as TE classes.

By default, IOS-XE and IOS-XR use the following TE classes. In this lab, we leave the defaults as they are. Note that you can change this by entering the mpls traffic-eng ds-te te-classes configuration mode (on either IOS-XE or IOS-XR).

TE-Class

CT

Priority

0

0

7

1

1

7

4

0

0

5

1

0

TE-Class 0 means CT0 with priority level 7. (Etc. for the other TE classes).

RSVP now carries a new object called CLASSTYPE. This is used in the PATH message to define which TE class the LSP is requesting bandwidth from. Note that when CT0 is used, there is no CLASSTYPE object, for backwards compatibility. The CLASSTYPE object, together with the LSP priority, define what TE class the bandwidth will be reserved from. (The TE class is not explicitly signalled in the PATH message, which is why all routers must agree on the TE class definitions).

Finally (if this was not confusing enough!), we have two bandwidth allocation models. First is MAM (Maximum Allocation Model), which we are configuring in this lab. In this model, each CT has its own independent bandwidth allocation (bandwidth constraint). Because we are only using CT0 and CT1 in Cisco, this is a bit easier to comprehend. CT0 cannot use any of CT1’s bandwidth. BC0=CT0 and BC1=CT1. This provides protection to CT1.

In the RDM (Russian Dolls Model), CT0 is allowed to use unused CT1 bandwidth. So BC0=CT0+CT1 and BC1=CT1. This provides better use of bandwidth, but at the possibility of CT1 not finding a path unless its LSP priority is low enough to preempt a CT0 and “take back” its CT1 bandwidth.

We must define the same model on all routers in our network as well. Both IOS-XE and IOS-XR use RDM by default. However, IOS-XR does not explicitly let you configure RDM as the bc-model, since it is the default. So if you want to change to MAM, then you specify the command below.

#IOS-XE
mpls traffic-eng ds-te bc-model mam|rdm

#IOS-XR
mpls traffic-eng 
 ds-te bc-model mam

Finally, we must change the RSVP bandwidth on an interface to use the MAM model:

#IOS-XE
int Gi1
 ip rsvp bandwidth mam max-reservable-bw kbps bc0 kbps bc1 kbps

#IOS-XR
rsvp
 int gi0/0/0/0
  bandwidth mam max-reservable-bw 1 gbps bc0 800 mbps bc1 200 mbps

The TE tunnel defines the TE class by the combination of the tunnel prioirty and the signalled-bandwidth. For example, this tunnel would use TE class 4 (CT0 and priority 0).

int tun0
 tunnel mpls traffic-eng bandwidth 10000 class-type 0
 tunnel mpls traffic-eng priority 0 0

If you use a priorty and CT pair that is not already defined as a TE class, the tunnel will fail to establish, because the path is invalid. Additionally, it appears that both the setup and the hold priority have to be valid priority levels that have a corresponding TE class. So by default, you can mismatch setup/hold but only if they are both either 7 or 0. The hold priority is used for the reservation.

Just like with regular MPLS-TE, bandwidth reserved from a higher priority takes away available bandwidth from the lower priority. This happens no matter which model is used. So within CT0, a priority 0 LSP removes available bandwidth from CT0 priority 7.

However, when using MAM, CT1 traffic allocation does not remove available bandwidth from CT0. In MAM, CT0 and CT1 have completely separate available bandwidth pools.

Verification

Before configuring any TE tunnels, notice that the TED looks different now. There are 8 TE classes instead of priority levels.

Why do the BC0 and BC1 values appear twice at class 0/1 and class 4/5? This is due to the default TE class definition. We can see this using the following show command. TE-Class 0 and TE-Class 1 use priority 7, while TE-Class 4 and TE-Class 5 use priority 0.

Let’s now setup the first TE tunnel from R8 to XR11.

#CSR8
int tun0
 description TUN1_TO_XR11
 tunn dest 11.11.11.11
 ip unn lo0
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng path-option 1 dynamic
 tunnel mpls traffic-eng bandwidth 8000 class-type 1
 tunnel mpls traffic-eng priority 0 0 

In the PATH message we see that the class-type is 1. This means the bandwidth allocation is from BC1. This is needed, because the priorty and bandwidth level are not enough to determine whether CT0 or CT1 is used. Note that when CT0 is used, this CLASSTYPE object is missing, which provides backwards compatibility for the CT0 class with other RSVP routers not running IETF mode.

Using the command show mpls traffic-eng link-management advertisements, we can see the current IGP advertisement for local TE information. Notice that R8 has removed 8M of available bandwidth for CT1 from both priority levels 0 and 7. Since this first LSP has a priority of 0, it removes available bandwidth from level 7 as well.

We’ll setup the next TE tunnel, which also requests 8M of BC1 bandwidth. This will have to go over a completely separate path compared to the previous tunnel.

#CSR8
int tun1
 description TUN2_TO_XR11
 tunn dest 11.11.11.11
 ip unn lo0
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng path-option 1 dynamic
 tunnel mpls traffic-eng bandwidth 8000 class-type 1
 tunnel mpls traffic-eng priority 7 7

We can see that 8M was only removed from priority level 7 on CSR8 this time. This should be intuitive, as it is no different than normal MPLS-TE behavior, in which a reservation at a given priority level removes available bandwidth at all priority levels above it. The difference is that you need to know what priority level is used by which TE class.

Next we setup the third tunnel which requests 95M of BC0 bandwidth. We will have 100M of BC0 on all links, so there are multiple candidate paths for R8 to choose from.

#CSR8
int tun2
 description TUN3_TO_XR11
 tunn dest 11.11.11.11
 ip unn lo0
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng path-option 1 dynamic
 tunnel mpls traffic-eng bandwidth 95000 class-type 0
 tunnel mpls traffic-eng priority 7 7

Configuration of the TE tunnels on XR11 is essentially the same, and works the same way. Once all three are setup, we can verify that tun0 and tun1 take a different path, and that available bandwidth is similar to what we saw on R8.

#XR11
int tunnel-te0
 dest 8.8.8.8
 ip unn lo0
 path-option 1 dynamic
 priority 0 0
 signalled-bandwidth 8000 class-type 1
!
int tunnel-te1
 dest 8.8.8.8
 ip unn lo0
 path-option 1 dynamic
 priority 7 7
 signalled-bandwidth 8000 class-type 1
!
int tunnel-te2
 dest 8.8.8.8
 ip unn lo0
 path-option 1 dynamic
 priority 7 7
 signalled-bandwidth 95000 class-type 0

All tunnels are up:

Tun0 and Tun1 use a different path:

Link ID 0 on XR11 has 8M subtracted from CT1 priority level 7 (TE Class 1). This is used by tunnel 1.

Link ID 1 on XR11 has 8M subtracted from TE Class 5, which also subtracts from TE Class 1, due to tunnel 0 using priority 0. It also has 95M subtracted from TE-class 0 due to tunnel 2 which uses priority 7.

What happens if the link (max reservable BW) < (BC0+BC1)?

Let’s remove all TE tunnels on XR11 and only configure RSVP bandwidth on a single interface.

#XR11
no int tunnel-te 0
no int tunnel-te 1
no int tunnel-te 2
!
rsvp
 interface GigabitEthernet0/0/0/0.501
  bandwidth mam max-reservable-bw 5000 bc0 4000 bc1 3000
 !
 interface GigabitEthernet0/0/0/0.512
  no bandwidth mam max-reservable-bw 110000 bc0 100000 bc1 10000

Gi0/0/0/0.501 now has 5M max reservable, 4M BC0 available, and 3M BC1 available.

We’ll configure a 3M TE tunnel using BC1 priority 0.

#XR11
int tunnel-te0
 dest 8.8.8.8
 ip unn lo0
 path-option 1 dynamic
 priority 0 0
 signalled-bandwidth 3000 class-type 1

As expected, the setup is successful, and 3M is subtracted from available BC1 bandwidth at both priority levels. However, notice that the BC0 available bandwidth at each priority level is now only 2M. This is because 5M-3M used up by BC1 leaves only 2M available for BC0.

The same thing happens if we change the tunnel to use class-type 0 bandwidth instead.

#XR11
int tunnel-te0
 shut
 signalled-bandwidth 3000 class-type 0
!
commit
!
int tunnel-te0
 no shut

Only 2M is available on the link now. So either BC1 can use up this 2M, or BC0 can still use up 1M. (BC0 had 4M available and 3M used now).

If you look at the TED, this actually counts as 1M allocated towards TE class 1 and 5.

If you try to setup a second TE tunnel that requests 3M from CT1, it will fail to setup.

#XR11
int tunnel-te1
 dest 8.8.8.8
 ip unn lo0
 path-option 1 dynamic
 priority 0 0
 signalled-bandwidth 3000 class-type 1

In MAM with oversubscription, CT1 cannot “take back” bandwidth from CT0. For this reason, you would likely not see this scenario with MAM, where max BW is less than BC0+BC1. The whole point of MAM is that CT0 and CT1 bandwidth is competely separate from each other. So typically Max BW = BC0 + BC1.

Interestingly, this “oversubscription” is what happens with RDM. BC0 is the combination of available bandwidth for CT0 and CT1, so essentially BC0 is the max bandwidth on the interface. This allows BC0 to borrow from BC1.

In MAM:

  • Max BW = BC0 + BC1 (typically)

In RDM:

  • Max BW = BC0

    • This allows BC0 to borrow from BC1

    • You cannot define the max BW in RDM, instead it is simply the BC0 value.