CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Verification
  • A note on “regional” black holing
  1. Labs
  2. BGP

Destination-Based RTBH (VRF CE-triggered)

PreviousDestination-Based RTBH (VRF Provider-triggered)NextSource-Based RTBH (VRF Provider-triggered)

Last updated 2 months ago

Topology: ine-spv4

Load rtbh.vrf.init.cfg

#IOS-XE
config replace flash:rtbh.vrf.init.cfg
 
#IOS-XR
configure
load bootflash:rtbh.vrf.init.cfg
commit replace
y

R1, XR2, R7 and R8 are all dual-stacked internet peers in an INET VRF. Configure destination-based RTBH within the core so that traffic destined for 1.1.1.1/32, 20.20.20.20/32, 2001:1::1/128 and 2001:20::20/128 is dropped. Use the CEs (R1 and XR2) for signaling via BGP communities. On the PEs (R2, XR1) ensure that these CEs can only blackhole traffic for prefixes they own.

Answer

#R2, R4, R5 (PEs)
ip community-list standard RTBH permit 100:666
!
ip route 192.0.2.1 255.255.255.255 null 0
!
route-map IBGP_VPNV4_IN
 match community RTBH
 set ip next-hop 192.0.2.1
route-map IBGP_VPNV4_IN permit 20
!
route-map IBGP_VPNV6_IN
 match community RTBH
 set ipv6 next-hop ::ffff:192.0.2.1
route-map IBGP_VPNV6_IN permit 20
!
router bgp 100
 address-family vpnv4
  neighbor 3.3.3.3 send-community both
  neighbor 3.3.3.3 route-map IBGP_VPNV4_IN in
 address-family vpnv6
  neighbor 3.3.3.3 send-community both
  neighbor 3.3.3.3 route-map IBGP_VPNV6_IN in

#R3 (RR)
router bgp 100
 template peer-policy IBGP
  send-community both

#R2 (PE)
interface Loopback10
 vrf forwarding INET
 ip address 192.0.2.2 255.255.255.0
!
ipv6 route vrf INET 100::1/128 null 0
!
ip prefix-list PL_R1_RTBH_V4 permit 1.1.1.0/24 le 32
ipv6 prefix-list PL_R1_RTBH_V6 permit 2001:1::/32 le 128
!
route-map RM_R1_V4_IN permit 5
 match ip addr prefix-list PL_R1_RTBH_V4
 match community RTBH
 set community no-export additive
 set ip next-hop 192.0.2.1
!
route-map RM_R1_V6_IN permit 5
 match ipv6 addr prefix-list PL_R1_RTBH_V6
 match community RTBH
 set community no-export additive
 set ipv6 next-hop 100::1
 
#R1 (CE)
route-map RTBH
 set community 100:666
! 
router bgp 1
 address-family ipv4
  network 1.1.1.1 mask 255.255.255.255 route-map RTBH
  neighbor 10.1.2.2 send-community
 exit-address-family
 !
 address-family ipv6
  network 2001:1::1/128 route-map RTBH
  neighbor 2001:10:1:2::2 send-community

#XR1 (PE)
route-policy IBGP_VPN_IN
  if community matches-any (100:666) then
    set next-hop discard
  endif
  pass
end-policy
!
router bgp 100
 neighbor 3.3.3.3
  address-family vpnv4 unicast
   route-policy IBGP_VPN_IN in
  address-family vpnv6 unicast
   route-policy IBGP_VPN_IN in
!
route-policy RP_XR2_V4_IN
  if destination in (20.20.20.0/24 le 32) and community matches-any (100:666) then
    set community (no-export) additive
    set next-hop discard
  endif
  if destination in (20.20.20.0/24) then
    pass
  endif
end-policy
!
route-policy RP_XR2_V6_IN
  if destination in (2001:20::/32 le 128) and community matches-any (100:666) then
    set community (no-export) additive
    set next-hop discard
  endif
  if destination in (2001:20::/32) then
    pass
  endif
end-policy

#XR2 (CE)
route-policy RTBH
  set community (100:666)
end-policy
!
router bgp 20
 address-family ipv4 unicast
  network 20.20.20.20/32 route-policy RTBH
 !
 address-family ipv6 unicast
  network 2001:20::20/128 route-policy RTBH
 !
 neighbor 10.19.20.19
  address-family ipv4 unicast
   send-community-ebgp
 !
 neighbor 2001:10:19:20::19
  address-family ipv6 unicast
   send-community-ebgp

Explanation

This lab is a bit more realistic, in which a CE is allowed to tag traffic it wants to blackhole with <ASN>:666. The provider will match this tag and blackhole traffic for these prefixes. We must ensure two things:

  1. The CE is allowed to blackhole this traffic (it owns the prefix)

  2. The route advertisement does not leak beyond the provider.

First, we configure the RTBH communities and route-maps on the PEs as seen in the previous lab. IOS-XE requires the dummy null0 route, while XR1 is able to simply use “set next-hop discard.”

#R2, R4, R5
ip community-list standard RTBH permit 100:666
!
ip route 192.0.2.1 255.255.255.255 null 0
!
route-map IBGP_VPNV4_IN
 match community RTBH
 set ip next-hop 192.0.2.1
route-map IBGP_VPNV4_IN permit 20
!
route-map IBGP_VPNV6_IN
 match community RTBH
 set ipv6 next-hop ::ffff:192.0.2.1
route-map IBGP_VPNV6_IN permit 20
!
router bgp 100
 address-family vpnv4
  neighbor 3.3.3.3 route-map IBGP_VPNV4_IN in
 address-family vpnv6
  neighbor 3.3.3.3 route-map IBGP_VPNV6_IN in

#XR1
route-policy IBGP_VPN_IN
  if community matches-any (100:666) then
    set next-hop discard
  endif
  pass
end-policy
!
router bgp 100
 neighbor 3.3.3.3
  address-family vpnv4 unicast
   route-policy IBGP_VPN_IN in
  address-family vpnv6 unicast
   route-policy IBGP_VPN_IN in

Additionally, we must configure “send-community both” on the IOS-XE routers.

#R2, R4, R5
router bgp 100
 address-family vpnv4
  neighbor 3.3.3.3 send-community both
 address-family vpnv6
  neighbor 3.3.3.3 send-community both

#R3
router bgp 100
 template peer-policy IBGP
  send-community both

Next, we have the PE policies which match 100:666, add the no-export community, and ensure that only prefixes owned by the CE are allowed to be blackholed. This is done more easily on IOS-XR, which is shown first. We simply add another if statement which matches prefixes in R2’s space up to /32 or /128, plus the community, adds no-export, and sets next-hop to discard:

route-policy RP_XR2_V4_IN
  if destination in (20.20.20.0/24 le 32) and community matches-any (100:666) then
    set community (no-export) additive
    set next-hop discard
  endif
  if destination in (20.20.20.0/24) then
    pass
  endif
end-policy
!
route-policy RP_XR2_V6_IN
  if destination in (2001:20::/32 le 128) and community matches-any (100:666) then
    set community (no-export) additive
    set next-hop discard
  endif
  if destination in (2001:20::/32) then
    pass
  endif
end-policy

On IOS-XE this is a bit more difficult. First, we must recurse the next-hop to a null0 route. Previously, this was done using a dummy null0 route in the global table. However, now the route is being learned directly from the CE in the INET VRF, so we need to recurse this to a null0 route in the INET VRF. Interestingly, this works fine for IPv6 but not IPv4. It seems that the null0 route for IPv4 makes the route inaccessible. To work around this, it seems if 192.0.2.1 is locally connected, it works fine. All we need is for R2 to direct traffic locally on the box and discard it. The most important thing is that R2 does not send this traffic to R1. Additionally, we add a higher-level route-map sequence which matches R1’s prefix space, up to a host route (/32 or /128), matches 100:666, adds no-export, and sets next-hop to a route that will recurse to null0 (or our dummy loopback).

#R2
interface Loopback10
 vrf forwarding INET
 ip address 192.0.2.2 255.255.255.0
!
ipv6 route vrf INET 100::1/128 null 0
!
ip prefix-list PL_R1_RTBH_V4 permit 1.1.1.0/24 le 32
ipv6 prefix-list PL_R1_RTBH_V6 permit 2001:1::/32 le 128
!
route-map RM_R1_V4_IN permit 5
 match ip addr prefix-list PL_R1_RTBH_V4
 match community RTBH
 set community no-export additive
 set ip next-hop 192.0.2.1
!
route-map RM_R1_V6_IN permit 5
 match ipv6 addr prefix-list PL_R1_RTBH_V6
 match community RTBH
 set community no-export additive
 set ipv6 next-hop 100::1

All that’s left is for us to signal the prefixes from the CEs:

#R1
route-map RTBH
 set community 100:666
! 
router bgp 1
 address-family ipv4
  network 1.1.1.1 mask 255.255.255.255 route-map RTBH
  neighbor 10.1.2.2 send-community
 exit-address-family
 !
 address-family ipv6
  network 2001:1::1/128 route-map RTBH
  neighbor 2001:10:1:2::2 send-community

#XR2
route-policy RTBH
  set community (100:666)
end-policy
!
router bgp 20
 address-family ipv4 unicast
  network 20.20.20.20/32 route-policy RTBH
 !
 address-family ipv6 unicast
  network 2001:20::20/128 route-policy RTBH
 !
 neighbor 10.19.20.19
  address-family ipv4 unicast
   send-community-ebgp
 !
 neighbor 2001:10:19:20::19
  address-family ipv6 unicast
   send-community-ebgp

Verification

On R2, we should see the blackhole advertisements from R1 have no-export added, and the nexthop has been set to the dummy null0 route:

R2’s CEF table for the VRF should show that the IPv4 traffic is dumped out the dummy loopback, and IPv6 traffic is discarded:

There is actually a problem here. R2 seems to be using the link-local nexthop found on the route, and ignoring the 100::1 nexthop. I cannot find a way to work around this problem.

Let’s move on and check that R5 and XR1 are dropping this traffic:

Let’s now verify that XR1 is locally dropping traffic that XR2 signaled to be blackholed. This is much more straightforward on IOS-XR, thanks to the “set next-hop discard” command available on the route-policy.

We can also see on IOS-XR that these routes are marked with an N in the BGP RIB, signifying that they are discard routes.

On other PEs, such as R2, we can verify that these prefixes have a null0 nexthop as well:

Traffic from any other PE destined for these four prefixes should be dropped at the edge. We can test this from R7:

Also ensure that other CEs do not see the host routes leaked from the provider (AS100):

A note on “regional” black holing

This document mentions “regional black holing”:

The idea is fairly simple. Different regions of the provider network will match different BGP communities for blackholing. For example, the west coast might match <ASN>:6661, and the east coast might match <ASN>:6662. Therefore you can use these two communities to only cause blackholing within those regions. This gives you a bit more control over the drop process. All routers could also match a community such as <ASN>:6666 which could be used to drop at all regions at once.

https://sec.cloudapps.cisco.com/security/center/resources/ipv6_remotely_triggered_black_hole