CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  1. Labs
  2. BGP

AIGP

PreviousPIC Edge for VPNv4NextAIGP Translation

Last updated 2 months ago

Topology: ine-spv4

Load bgp.aigp.init.cfg

#IOS-XE
config replace flash:bgp.aigp.init.cfg
 
#IOS-XR
configure
load bootflash:bgp.aigp.init.cfg
commit replace
y

BGP is fully setup in the above topology. OSPF is used as the IGP.

Currently, R1 is taking a higher end-to-end metric path (130) via R3 to XR2’s loopbacks. Use AIGP so that R1 will prefer the lower overall cost (120) via R4.

Answer

#R1
route-map SET_AIGP
 set aigp-metric igp-metric
!
router bgp 100
 template peer-policy IBGP
  aigp
 exit
 !
 add ipv4
  neighbor 2.2.2.2 inherit peer-policy IBGP
  neighbor 3.3.3.3 inherit peer-policy IBGP
  neighbor 4.4.4.4 inherit peer-policy IBGP
  network 1.1.1.1 mask 255.255.255.255 route-map SET_AIGP
 !
 add ipv6
  neighbor 2001::2:2:2:2 inherit peer-policy IBGP
  neighbor 2001::3:3:3:3 inherit peer-policy IBGP
  neighbor 2001::4:4:4:4 inherit peer-policy IBGP
  network 2001::1:1:1:1/128 route-map SET_AIGP

#XR2
route-policy SET_AIGP
  set aigp-metric igp-cost
end-policy
!
router bgp 200
 address-family ipv4 unicast
  network 20.20.20.20/32 route-policy SET_AIGP
 !
 address-family ipv6 unicast
  network 2001::20:20:20:20/128 route-policy SET_AIGP
 !
 neighbor-group IBGP_V4
  address-family ipv4 unicast
   aigp
 !
 neighbor-group IBGP_V6
  address-family ipv6 unicast
   aigp

#R3, R4
router bgp 100
 template peer-policy EBGP
  aigp
 !
 template peer-policy IBGP
  aigp

#R5, R6
router bgp 200
 template peer-policy EBGP
  aigp
 !
 template peer-policy IBGP
  aigp

#R2
router bgp 100
 template peer-policy IBGP
  aigp
 exit
 !
 add ipv4
  neighbor 1.1.1.1 inherit peer-policy IBGP
  neighbor 3.3.3.3 inherit peer-policy IBGP
  neighbor 4.4.4.4 inherit peer-policy IBGP
 !
 add ipv6
  neighbor 2001::1:1:1:1 inherit peer-policy IBGP
  neighbor 2001::3:3:3:3 inherit peer-policy IBGP
  neighbor 2001::4:4:4:4 inherit peer-policy IBGP

#XR1
router bgp 200
 neighbor-group IBGP_V4
  address-family ipv4 unicast
   aigp
 !
 neighbor-group IBGP_V6
  address-family ipv6 unicast
   aigp

Explanation

AIGP (Accumulated IGP) is a “new” path attribute that works like MED but that is cumulative end-to-end. The local IGP cost is added to the AIGP value. This makes for an end-to-end lowest IGP cost decision, instead of only using the MED alone. This assumes that the remote AS’s IGP costs and the local IGP costs are directly comparable.

There are two parts to AIGP: injecting the prefix with the AIGP attribute, and passing this attribute along to peers.

To insert the AIGP path attribute with a prefix, you must do this upon injection. You cannot take an iBGP-learned route and add an AIGP value to it with a route-map. This is why we inject the prefixes at R1 and XR2 with the AIGP value. Another option could be to re-inject the prefixes at the ASBRs with a network statement that has a route-map setting aigp-metric.

#R1
route-map SET_AIGP
 set aigp-metric igp-metric
!
router bgp 100
 add ipv4
  network 1.1.1.1 mask 255.255.255.255 route-map SET_AIGP
 !
 add ipv6
  network 2001::1:1:1:1/128 route-map SET_AIGP

#XR2
route-policy SET_AIGP
  set aigp-metric igp-cost
end-policy
!
router bgp 200
 address-family ipv4 unicast
  network 20.20.20.20/32 route-policy SET_AIGP
 !
 address-family ipv6 unicast
  network 2001::20:20:20:20/128 route-policy SET_AIGP

Next, you must enable sending and receiving of the AIGP path attribute for each neighbor. We can do this using a peer-policy template on IOS-XE or using the neighbor-group on IOS-XR. Note that we do not technically need to enable this on XR1. The router will process received AIGP path attributes automatically. (But it doesn’t hurt to add it.)

#R3, R4
router bgp 100
 template peer-policy EBGP
  aigp
 !
 template peer-policy IBGP
  aigp

#R5, R6
router bgp 200
 template peer-policy EBGP
  aigp
 !
 template peer-policy IBGP
  aigp

#R1
router bgp 100
 template peer-policy IBGP
  aigp
 exit
 !
 add ipv4
  neighbor 2.2.2.2 inherit peer-policy IBGP
  neighbor 3.3.3.3 inherit peer-policy IBGP
  neighbor 4.4.4.4 inherit peer-policy IBGP !
 add ipv6
  neighbor 2001::2:2:2:2 inherit peer-policy IBGP
  neighbor 2001::3:3:3:3 inherit peer-policy IBGP
  neighbor 2001::4:4:4:4 inherit peer-policy IBGP

#XR2
router bgp 200
 neighbor-group IBGP_V4
  address-family ipv4 unicast
   aigp
 !
 neighbor-group IBGP_V6
  address-family ipv6 unicast
   aigp

#R2
router bgp 100
 template peer-policy IBGP
  aigp
 exit
 !
 add ipv4
  neighbor 1.1.1.1 inherit peer-policy IBGP
  neighbor 3.3.3.3 inherit peer-policy IBGP
  neighbor 4.4.4.4 inherit peer-policy IBGP
 !
 add ipv6
  neighbor 2001::1:1:1:1 inherit peer-policy IBGP
  neighbor 2001::3:3:3:3 inherit peer-policy IBGP
  neighbor 2001::4:4:4:4 inherit peer-policy IBGP

#XR1
router bgp 200
 neighbor-group IBGP_V4
  address-family ipv4 unicast
   aigp
 !
 neighbor-group IBGP_V6
  address-family ipv6 unicast
   aigp

Let’s first examine the issue before we add AIGP. R1’s bestpath to XR2’s prefixes is via R3 due to the lower MED value received from R3 compared to R4.

Above, we can easily see that the end-to-end path via R4 is actually best. The paths though R4 have a MED of 102 with a nexthop metric of 21 = 123. The paths through R3 have a MED of 31 with a nexthop metric of 101 = 132.

Let’s now enable AIGP on only R1.

#R1
route-map SET_AIGP
 set aigp-metric igp-metric
!
router bgp 100
 template peer-policy IBGP
  aigp
 exit
 !
 add ipv4
  neighbor 2.2.2.2 inherit peer-policy IBGP
  neighbor 3.3.3.3 inherit peer-policy IBGP
  neighbor 4.4.4.4 inherit peer-policy IBGP
  network 1.1.1.1 mask 255.255.255.255 route-map SET_AIGP
 !
 add ipv6
  neighbor 2001::2:2:2:2 inherit peer-policy IBGP
  neighbor 2001::3:3:3:3 inherit peer-policy IBGP
  neighbor 2001::4:4:4:4 inherit peer-policy IBGP
  network 2001::1:1:1:1/128 route-map SET_AIGP

R1 sends the update with the AIGP path attribute. Notice this is not a community, it is a full path attribute, just like MED.

The ASBRs in AS200 are not receiving the AIGP yet. We must configure R3 and R4 to send the AIGP to eBGP neighbors and accept the AIGP from R1. We must also configure R5 and R6 to accept the AIGP. Accepting and sending the AIGP value is accomplished using the same single command (aigp).

#R3, R4
router bgp 100
 template peer-policy EBGP
  aigp
 !
 template peer-policy IBGP
  aigp

#R5, R6
router bgp 200
 template peer-policy EBGP
  aigp

We can now see the AIGP value on R5 and R6 from their eBGP peers but not from the iBGP path yet. This is because we did not enable AIGP for iBGP sessions in AS200 yet.

AIGP is sort of like a negotiated capability, but it’s not actually negotiated between peers. You simply must enable it on a peer so that the router will locally accept the AIGP PA and send the AIGP PA. You can verify this using show bgp neighbor:

We now configure AIGP everywhere, and configure AIGP on XR2.

Looking at R1 we can see that it has AIGP values for the two paths to XR2 now, and it uses the path via R4 this time because of the lower end-to-end path:

XR2 has better output, because it actually shows the cumulative AIGP value and explicitly states why one path is better than another.

AIGP is inserted in the BGP bestpath decision before the AS_PATH length check. This means that LP is a stronger attribute than AIGP. You can disable AIGP using bgp bestpath aigp ignore under the BGP process on both IOS-XE and IOS-XR. (However, this does not appear to actually work for me on either R1 or XR2. They are still preferring the lower AIGP metric instead of the lower MED.)

Also note that AIGP uses a “missing-as-worst” behavior, in which a path with no AIGP attribute is worse than a path with an AIGP attribute with any value. Also, if two paths have the same AIGP value (after adding the nexthop IGP metric to the AIGP metric), the next step in the path selection process continues like normal.