CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Task 1. Create a new NSO instance (informational)
  • Task 2. Add Devices
  • Task 3. Display router configuration
  • Task 4. Make changes from NSO
  • Task 5. Rollback changes
  • Task 6. Re-apply changes in two commits
  • Task 7. Rollback the last two commits
  • Task 8. Obtain XML formatting
  • Task 9. Create a device config template
  • Task 10. Run an operational show command from NSO
  • Task 11. Compliance report
  1. Labs
  2. NSO

Basic NSO Usage

Load blank.ssh.enabled.cfg

#IOS-XE
config replace flash:blank.ssh.enabled.cfg
 
#IOS-XR
configure
load bootflash:blank.ssh.enabled.cfg
commit replace
y

This lab has many separate tasks. I have created expandable answers to better format the lab. Simply click the down-arrow to expand the answer block.

Task 1. Create a new NSO instance (informational)

The NSO server is reachable at 10.200.255.16. SSH to it (nso/nso). An instance called nso-instance is already created. This first task is informative only, and provides the steps needed to create the instance.

Task 1 Answer
# Find the existing package names
ls nso-6.1/packages/neds

# Source the ncsrc file. This configures environment variables, including adding
# path variables. This also adds a PYTHONPATH variable, allowing you to use
# the NSO modules for python, which we will look at later.
#
# Without doing this you will see the following error:
#
# user@ubuntu22-server:~$ ncs-setup
# ncs-setup: command not found
source nso-6.1/ncsrc

# Create the local installation instance using ncs-setup
# If needed, you can use --help
ncs-setup --package nso-6.1/packages/neds/cisco-iosxr-cli-7.49 \
--package nso-6.1/packages/neds/cisco-ios-cli-6.92 \
--dest nso-instance

# You should now see a dir created called nso-instance1
# This will contain the config file (nsc.conf), packages (with symlinks to the NEDS
# referenced in the nsc-setup) and the ncs-cdb
ls nso-instance

# To start NSO, you must use the "ncs" command from the instance dir.
# If you use it outside the directory it won't work. For example:
#
# user@ubuntu22-server:~$ ncs
# Bad configuration: /home/user/nso-6.1/etc/ncs/ncs.conf:0: "./state/packages-in-use: Failed to create symlink: no such file or directory"
# Daemon died status=21
cd nso-instance
ncs

# After a few minutes, ncs will be started. View the status using:
ncs --status | head

# You should see "status: started"

Task 2. Add Devices

Connect to NSO’s CLI. Add all 14 IOS-XE and IOS-XR devices into two separate groups (one for XE and one for XR). Use cisco/cisco for SSH authentication. Create a third group for all devices. Ensure you can connect to all devices. Sync the config from all devices to NSO.

All routers have IPs in 10.254.0.<100 + R#>

You will also need to add the following line to the NSO config:

devices global-settings ssh-algorithms public-key [ ssh-ed25519 ecdsa-sha2-nistp256 ecdsa-sha2-nistp384 ecdsa-sha2-nistp521 rsa-sha2-512 rsa-sha2-256 ssh-rsa ssh-dss  ]

Task 2 Answer
# First connect to NSO's CLI. Use the cisco style with "-C"
ncs_cli -C -u admin

# Create an auth group which uses cisco/cisco
conf
devices authgroups group default
default-map remote-name   cisco
default-map remote-password   cisco
default-map remote-secondary-password   cisco
commit

# Add each device, below is IOS-XE
devices device r1
address 10.254.0.101
authgroup default
device-type cli ned-id cisco-ios-cli-6.92
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked

# Add IOS-XR devices
devices device xr1
address 10.254.0.111
authgroup default
device-type cli ned-id cisco-iosxr-cli-7.49
device-type cli protocol ssh
ssh host-key-verification none
state admin-state unlocked

# Add devices to the device groups
devices device-group XE
device-name r1
...
device-name r10

devices device-group XR
device-name xr1
...
device-name xr4

devices device-group ALL
device-group XE
device-group XR

# Connect to all devices
devices device-group ALL connect

# Sync the config from all devices to NSO
devices device-group ALL sync-from

# Check the sync state
devices device-group ALL check-sync

Task 3. Display router configuration

Display the running config of all XE devices, limiting the output to ip addresses. Format the output in json. Do this in one line.

Task 3 Answer
show running-config devices device r* config interface GigabitEthernet ip address | display json

The running-config of a device in NSO contains the details of the connection to the device, and the full configuration of the device (after it has been synced).

For example, we can see the connection details of a device using the following command:

admin@ncs# show running-config devices device r1 | de-select config
devices device r1
 address   10.254.0.101
 ssh host-key-verification none
 authgroup test
 device-type cli ned-id cisco-ios-cli-6.92
 device-type cli protocol ssh
 state admin-state unlocked
!
admin@ncs#

The NED handles parsing the synced-from config into modeled data within NSO. This allows us to use powerful filters to extract only certain config items. For example, this shows the config of every Gig interface on router r1.

show running-config devices device r1 config interface GigabitEthernet

To see this from multiple devices, we can use a wildcard:

show running-config devices device * config interface GigabitEthernet

To format this in json, we can pipe to “display json”. Other options include “display xml” and “display restconf”.

admin@ncs# show running-config devices device * config interface GigabitEthernet | display json
{
  "data": {
    "tailf-ncs:devices": {
      "device": [
        {
          "name": "r1",
          "config": {
            "tailf-ned-cisco-ios:interface": {
              "GigabitEthernet": [
                {
                  "name": "1",
                  "negotiation": {
                    "auto": true
                  },
                  "mop": {
                    "xenabled": false,
                    "sysid": false
                  },
                  "ip": {
                    "no-address": {
                      "address": false
                    }
                  }
                },
                {
                  "name": "1.254",
                  "encapsulation": {
                    "dot1Q": {
                      "vlan-id": 254
                    }
                  },
                  "ip": {
                    "address": {
                      "primary": {
                        "address": "10.254.0.101",
                        "mask": "255.255.255.0"
                      }
                    }
                  }
                },
                {
                  "name": "2",

Task 4. Make changes from NSO

Set Lo1 on R2 using the following settings:

  • description MY_DESCRIPTION

  • IP address 10.0.0.2/24

Set Lo1 on R3 using the following settings:

  • description MY_DESCRIPTION

  • IP address 10.0.0.3/24

Task 4 Answer
devices device r2 config
interface Loopback1
description MY_DESCRIPTION
ip address 10.0.0.2 255.255.255.0
devices device r3 config
interface Loopback1
description MY_DESCRIPTION
ip address 10.0.0.3 255.255.255.0

View the staged changes:

top
commit dry-run outformat native

Commit the config:

commit

R2 and R3 now have the updated config:

R2#show run int lo1

interface Loopback1
 description MY_DESCRIPTION
 ip address 10.0.0.2 255.255.255.0
end


R3#show run int lo1

interface Loopback1
 description MY_DESCRIPTION
 ip address 10.0.0.3 255.255.255.0
end

Task 5. Rollback changes

Rollback the changes that were just made.

Task 5 Answer
rollback configuration

Check to verify what changes will be pushed to rollback to the previous config. Notice that both R2 and R3 will be rolled back at the same time.

admin@ncs(config)# commit dry-run outformat native
native {
    device {
        name r2
        data no interface Loopback1
    }
    device {
        name r3
        data no interface Loopback1
    }
}

Commit and verify the config is gone.

commit

R2#show run int lo1
                  ^
% Invalid input detected at '^' marker.


R3#show run int lo1
                  ^
% Invalid input detected at '^' marker.

Task 6. Re-apply changes in two commits

Re-add loopback1 to both R2 and R3, but do it in two separate commits.

Task 6 Answer
devices device r2 config
interface Loopback1
description MY_DESCRIPTION
ip address 10.0.0.2 255.255.255.0
commit
!
!
devices device r3 config
interface Loopback1
description MY_DESCRIPTION
ip address 10.0.0.3 255.255.255.0
commit

Task 7. Rollback the last two commits

Rollback the last two changes

Task 7 Answer
# To rollback to a previous commit that was not the latest commit,
# use must display a list of all commits:
rollback configuration ?

# Select the 2nd-to-bottom commit ID
rollback configuration 10040

# Ensure that this will rollback the config as you intend
commit dry-run outformat native

# Commit
commit

Task 8. Obtain XML formatting

Create a configuration change again for R2. Do not commit. Instead, obtain the XML formatting for this change.

Task 8 Answer

Using commit dry-run outformat xml is a handy way to quickly get XML formatting for basic IOS changes.

devices device r2 config
interface Loopback1
description MY_DESCRIPTION
ip address 10.0.0.2 255.255.255.0

# Obtain XML formatting for this config
top
admin@ncs(config)# commit dry-run outformat xml
result-xml {
    local-node {
        data <devices xmlns="http://tail-f.com/ns/ncs">
               <device>
                 <name>r2</name>
                 <config>
                   <interface xmlns="urn:ios">
                     <Loopback>
                       <name>1</name>
                       <description>MY_DESCRIPTION</description>
                       <ip>
                         <address>
                           <primary>
                             <address>10.0.0.2</address>
                             <mask>255.255.255.0</mask>
                           </primary>
                         </address>
                       </ip>
                     </Loopback>
                   </interface>
                 </config>
               </device>
             </devices>
    }
}

Task 9. Create a device config template

Create a device config template that sets DNS servers on both IOS-XE and IOS-XR to 8.8.8.8, 1.1.1.1. Apply the template to all devices.

Task 9 Answer

Template are very powerful in NSO, because they can handle multiple device types. The device type is automatically determined based on the configuration of the device in NSO, so you can simply apply the single template to all devices, and NSO will automatically apply the correct syntax per-device.

# Create template
devices template DNS
ned-id cisco-ios-cli-6.92
config
ip name-server name-server-list 8.8.8.8
ip name-server name-server-list 1.1.1.1
top

devices template DNS
ned-id cisco-iosxr-cli-7.49
config
domain name-server 8.8.8.8
domain name-server 1.1.1.1

# Apply template to the ALL device-group
devices device-group ALL apply-template template-name DNS

# Check changes
commit dry-run outformat native

# Apply
commit

Task 10. Run an operational show command from NSO

Run the command “show ip int br” on all devices from NSO

Task 10 Answer
devices device * live-status exec show ip int br

The live-status feature in NSO allows you to grab live statistics from a device. For example, you can see a device’s IOS interface live stats using the following command:

admin@ncs# show devices device r1 live-status ios-stats:interfaces
                        ADMIN
TYPE             NAME   STATUS  IP ADDRESS       MAC ADDRESS
-----------------------------------------------------------------
GigabitEthernet  1      up      10.0.0.15/24     c000.0100.cafe
GigabitEthernet  2      up      -                0c00.8dd6.1d01
GigabitEthernet  2.254  up      10.254.0.101/24  0c00.8dd6.1d01

NSO also gives you the ability to run arbitrary commands by using the exec keyword. Using a wildcard device name allows you to easily run this command against multiple devices at once.

admin@ncs# devices device * live-status exec show ip int br
devices device r1 live-status exec show
    result
Any interface listed with OK? value "NO" does not have a valid configuration

Interface              IP-Address      OK? Method Status                Protocol
GigabitEthernet1       10.0.0.15       YES manual up                    up
GigabitEthernet2       unassigned      NO  unset  up                    up
GigabitEthernet2.254   10.254.0.101    YES manual up                    up
R1#
devices device r2 live-status exec show
    result
Any interface listed with OK? value "NO" does not have a valid configuration

Interface              IP-Address      OK? Method Status                Protocol
GigabitEthernet1       10.0.0.15       YES manual up                    up
GigabitEthernet2       unassigned      NO  unset  up                    up
GigabitEthernet2.254   10.254.0.102    YES TFTP   up                    up
R2#

Task 11. Compliance report

Remove the DNS servers on XR1 and R1

#XR1
no domain name-server 8.8.8.8
no domain name-server 1.1.1.1

#R1
no ip name-server 8.8.8.8 1.1.1.1

Sync the config from all devices again on NSO.

Create a compliance report on NSO that finds discrepancies in the DNS server settings among all devices. Output the results in HTML.

Task 11 Answer
devices device-group ALL sync-from

config
compliance reports report DNS-CHECK
compare-template DNS ALL
commit
end

compliance reports report DNS-CHECK run outformat html

NSO will give you a URL you can navigate to:

admin@ncs# compliance reports report DNS-CHECK run outformat html
time 2023-12-16T16:46:27.115924+00:00
compliance-status violations
info Checking no devices and no services
location http://localhost:8080/compliance-reports/report_2023-12-16T16:46:27.115924+00:00.html

To fix the issues, you can simply apply the template again to all devices:

devices device-group ALL apply-template template-name DNS

You can check compliance agan, and you should see no violations. Note that you did not need to sync config again after making the changes.

PreviousStartNextBasic NSO Template Service

Last updated 1 month ago

You can view this by browsing this URL, changing to 10.200.255.16. You will need to login first, using admin/admin.

localhost