CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Verification
  • Notes on mLDP as the underlay
  1. Labs
  2. Russo Inter-AS

Option C mVPN

Load russo.pl.course.inter-as.opt.c.mvpn.init.cfg

#IOS-XE
config replace flash:russo.pl.course.inter-as.opt.c.mvpn.init.cfg
 
#IOS-XR
configure
load bootflash:russo.pl.course.inter-as.opt.c.mvpn.init.cfg
commit replace
y

NOTE: This is not working on CSR1000v 16.9.8. You will need to redeploy the topology with CSR100v version 17.x for this to work. This works on 17.3.2 for me.

L3VPN inter-AS option C is fully setup and working. Configure mVPN inter-AS using profile 11.

  • Use P-PIM in the core with SSM

    • PIM is already enabled everywhere, including on the ASBR NNI links

  • Use BGP for C-multicast signaling

  • BGP ipv4/mvpn is already configured within each AS, but not for the RR-RR BGP session

On R1, join (192.0.2.1, 232.1.1.1) within VRF L3B and L3C. Ensure that when R1 VRF L3A pings this group, both 172.16.18.1 and 172.16.110.1 respond.

Answer

#R6
vrf definition L3A
 add ipv4
  mdt auto-discovery pim inter-as
  mdt default 232.0.0.1
  mdt overlay use-bgp

#R8
vrf definition L3B
 add ipv4
  mdt auto-discovery pim inter-as
  mdt default 232.0.0.1
  mdt overlay use-bgp

#R10
vrf definition L3C
 add ipv4
  mdt auto-discovery pim inter-as
  mdt default 232.0.0.1
  mdt overlay use-bgp

#XR12
multicast-routing vrf L3A add ipv4
 mdt so lo0
 mdt default 232.0.0.1
 bgp auto-discovery pim inter-as
!
router pim vrf L3A add ipv4
 mdt c-multicast-routing bgp

#R7
router bgp 65001
 add ipv4 mvpn
  neighbor 10.0.0.14 activate
  neighbor 10.0.0.14 next-hop-unchanged

#XR14
router bgp 65002
 address-family ipv4 mvpn
 !
 neighbor-group IBGP_RRC
  address-family ipv4 mvpn
   route-reflector-client
 !
 neighbor 10.0.0.7
  add ipv4 mvpn
   route-policy PASS in
   route-policy PASS out
   next-hop-unchanged
 !
 neighbor 10.0.0.4 use neighbor-group IBGP_RRC
 neighbor 10.0.0.9 use neighbor-group IBGP_RRC
 neighbor 10.0.0.13 use neighbor-group IBGP_RRC

#R4, R9
router bgp 65002
 neighbor 10.0.0.14 remote-as 65002
 neighbor 10.0.0.14 update-so lo0
 add ipv4
  neighbor 10.0.0.14 activate
  neighbor 10.0.0.14 send-label

#XR13
router bgp 65002
 add ipv4 uni
  allocate-label all
 !
 neighbor 10.0.0.14
  remote-as 65002
  update-so lo0
  add ipv4 labeled-unicast

Explanation

In inter-AS option C, all PE and RR loopbacks are distributed into each AS. This allows mVPN to operate as normal, provided the core tree can be setup. In profile 11, we use P-PIM in the underlay, so all routers must have routes to the remote PE loopbacks in order to build the PIM distribution tree hop-by-hop.

In AS65002, we are using BGP-LU for remote loopback reachability. BGP-LU is needed here because we are using SR, so we cannot simply redistribute loopbacks into the IGP and rely on LDP to allocate a label. However, this presents a problem when R8 tries to join an SSM group such as (R6, 232.0.0.1). Its neighbors XR13 and R9 do not have a route to R6, so their RPF check fails. (Another option would be to use PIM RPF proxy, but this in my opinion is more complex than just extending iBGP-LU on all P routers).

To solve this, we can run BGP-LU in a full mesh, including the P routers.

#XR14
router bgp 65002
 neighbor 10.0.0.4 use neighbor-group IBGP_RRC
 neighbor 10.0.0.9 use neighbor-group IBGP_RRC
 neighbor 10.0.0.13 use neighbor-group IBGP_RRC

#R4, R9
router bgp 65002
 neighbor 10.0.0.14 remote-as 65002
 neighbor 10.0.0.14 update-so lo0
 add ipv4
  neighbor 10.0.0.14 activate
  neighbor 10.0.0.14 send-label

#XR13
router bgp 65002
 add ipv4 uni
  allocate-label all
 !
 neighbor 10.0.0.14
  remote-as 65002
  update-so lo0
  add ipv4 labeled-unicast

Next, the RRs run ipv4/mvpn as an additional address-family on the eBGP session.

#R7
router bgp 65001
 add ipv4 mvpn
  neighbor 10.0.0.14 activate
  neighbor 10.0.0.14 next-hop-unchanged

#XR14
router bgp 65002
 neighbor 10.0.0.7
  add ipv4 mvpn
   route-policy PASS in
   route-policy PASS out
   next-hop-unchanged

Finally, the PEs enable mVPN as usual. The only interesting note is the inter-as keyword, which prevents the NO_EXPORT community from being attached to the BGP routes.

#R6
vrf definition L3A
 add ipv4
  mdt auto-discovery pim inter-as
  mdt default 232.0.0.1
  mdt overlay use-bgp

#R8
vrf definition L3B
 add ipv4
  mdt auto-discovery pim inter-as
  mdt default 232.0.0.1
  mdt overlay use-bgp

#R10
vrf definition L3C
 add ipv4
  mdt auto-discovery pim inter-as
  mdt default 232.0.0.1
  mdt overlay use-bgp

#XR12
multicast-routing vrf L3A add ipv4
 mdt so lo0
 mdt default 232.0.0.1
 bgp auto-discovery pim inter-as
!
router pim vrf L3A add ipv4
 mdt c-multicast-routing bgp

Verification

On R8, verify that it has learned the auto-discovery routes for the remote PEs:

R8 should join the SSM group in the P-PIM underlay:

The ASBRs should have SSM state for all four entries - one per PE. On R3 we see all four. The two remote PEs have an RPF neighbor of R2 given the lower MED we set in the previous lab.

XR11 is the preferred egress for R8 and R10 within AS65001, so XR11 holds the state for these two entries:

R2 holds the state for the R6, XR12 rooted entries, with OIL including the NNI to R3:

The P-PIM underlay is simply built by enabling PIM everywhere and ensuring that every single router has a route to the remote PE loopbacks.

Next, the BGP service routes are reflected between the RRs just like VPN/v4/v6 and l2vpn/evpn. We’ll join an SSM group on R1 VRF L3B and L3C, which will prompt a type 7 route from R8 and R10.

#R8
int GigabitEthernet2.3018
 ip igmp ver 3

#R10
int GigabitEthernet2.3110
 ip igmp ver 3

#R1
int GigabitEthernet2.3018
 ip igmp ver 3
 ip igmp join-group 232.1.1.1 so 192.0.2.1
int GigabitEthernet2.3110
 ip igmp ver 3
 ip igmp join-group 232.1.1.1 so 192.0.2.1

XR12 receives the route from R10 (due to highest RID), and adds the (S, G) entry in the MRIB for the VRF, with the OIL including the tunnel for the default MDT. Remember that XR12 is the bestpath to 192.0.2.1 because it receives the route from R1 with lower MED.

When R1 pings this group from L3A, both “hosts” in L3B and L3C respond.

Notes on mLDP as the underlay

mLDP can also easily be used for the underlay. You must enable mLDP everywhere (including the NNI). If using BGP-LU for the distribution of remote loopbacks (instead of redistributing into the IGP), then you also must enable recursive-FEC. This is only available on IOS-XR. There is a separate lab on this in the mVPN lab series using all IOS-XR routers.

PreviousOption C L3NNI w/ L2VPNNextBGP RPKI

Last updated 2 months ago