CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  1. Labs
  2. MPLS-TE

Per-VRF TE Tunnels

Load flash:mpls.te.per.vrf.init.cfg

#IOS-XE
config replace flash:mpls.te.per.vrf.init.cfg

#IOS-XR
configure
load bootflash:mpls.te.per.vrf.init.cfg
commit replace
y

There are two customer VRFs now: “VOICE” and “DATA.”

XRv13 and XRv14 each have one interface and one loopback in each VRF. They are running VRF Lite:

  • VOICE

    • XRv13

      • Lo0= 100.13.13.13/32

    • XRv14

      • Lo0 = 100.14.14.14/32

  • DATA

    • XRv13

      • Lo1= 200.13.13.13/32

    • XRv14

      • Lo1 = 200.14.14.14/32

Configure two bidirectional TE tunnels between CSR8 and XRv11.

  • The Voice TE tunnel should use most direct path between the two PEs.

    • It should reserve 5M of CT1 bandwidth using the MAM model so that this bandwidth is protected.

  • The Data TE tunnel should use the path: CSR8-CSR6-CSR9-CSR10-XR12-XR11.

Answer

Configure DS-TE IETF mode with MAM on at least one path between CSR8 and XR11.

#CSR8
mpls traffic-eng ds-te mode ietf
mpls traffic-eng ds-te bc-model mam
!
int gi2.568
 ip rsvp bandwidth mam max-reservable-bw 1000000 bc0 950000 bc1 50000

#CSR6
mpls traffic-eng ds-te mode ietf
mpls traffic-eng ds-te bc-model mam
!
int gi2.568
 ip rsvp bandwidth mam max-reservable-bw 1000000 bc0 950000 bc1 50000
int gi2.562
 ip rsvp bandwidth mam max-reservable-bw 1000000 bc0 950000 bc1 50000

#XR12
mpls traffic-eng
 ds-te mode ietf
 ds-te bc-model mam
!
rsvp
 interface GigabitEthernet0/0/0/0.512
  bandwidth mam max-reservable-bw 1000000 bc0 950000 bc1 50000
  bandwidth 1000000
 !
 interface GigabitEthernet0/0/0/0.562
  bandwidth mam max-reservable-bw 1000000 bc0 950000 bc1 50000
  bandwidth 1000000

#XR11
mpls traffic-eng
 ds-te mode ietf
 ds-te bc-model mam
!
rsvp
 interface GigabitEthernet0/0/0/0.512
  bandwidth mam max-reservable-bw 1000000 bc0 950000 bc1 50000

Configure TE tunnels and a secondary loopback for DATA VRF.

#CSR8
int lo1
 ip add 8.8.8.9 255.255.255.255
 ip ospf 1 area 0                  ! Not strictly necessary
!
vrf def DATA
 add ipv4
  bgp next-hop Lo1
!
int tun0
 description VOICE_TO_XR11
 tunnel dest 11.11.11.11
 ip unn lo0
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng bandwidth 5000 class-type 1
 tunnel mpls traffic-eng priority 0 0
 tunnel mpls traffic-eng autoroute announce
 tunnel mpls traffic-eng path-option 1 dynamic
!
ip explicit-path name CSR8-CSR6-CSR9-CSR10-XR12-XR11
 next-address 6.6.6.6
 next-address 9.9.9.9
 next-address 10.10.10.10
 next-address 12.12.12.12
 next-address 11.11.11.11
!
int tun1
 description DATA_TO_XR11
 ip unn lo0
 tunnel dest 11.11.11.11
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng path-option 1 explicit name CSR8-CSR6-CSR9-CSR10-XR12-XR11
!
ip route 11.11.11.12 255.255.255.255 tun1

#XR11
int Lo1
 ip add 11.11.11.12/32
!
router ospf 1
 area 0
  int Lo1
!
route-policy VPNV4_NEXTHOP
  if extcommunity rt matches-any (2:2) then
    set next-hop 11.11.11.12
  endif
  pass
end-policy
!
router bgp 132
 af-group AF_VPNV4 address-family vpnv4 unicast
  route-policy VPNV4_NEXTHOP out
!
int tunnel-te0
 description VOICE_TO_CSR8
 dest 8.8.8.8
 ip unn lo0
 autoroute announce
 signalled-bandwidth 5000 class-type 1
 priority 0 0
 path-option 1 dynamic
!
explicit-path name XR11-XR12-CSR10-CSR9-CSR6-CSR8
 index 1 next-address 12.12.12.12
 index 2 next-address 10.10.10.10
 index 3 next-address 9.9.9.9
 index 4 next-address 6.6.6.6
 index 5 next-address 8.8.8.8
!
int tunnel-te1
 description DATA_TO_CSR8
 dest 8.8.8.8
 ip unn lo0
 path-option 1 explicit name XR11-XR12-CSR10-CSR9-CSR6-CSR8
!
router static add ipv4 uni
 8.8.8.9/32 tunnel-te1

Explanation

DS-TE is covered in a separate lab, so we won’t go into its details here.

For TE tunnels that you want to use on a per-VRF basis, you must use a separate loopback. We configure Lo1 for this purpose on CSR8 and XR11:

#CSR8
int lo1
 ip add 8.8.8.9 255.255.255.255
 ip ospf 1 area 0

#XR11
int Lo1
 ip add 11.11.11.12/32
!
router ospf 1
 area 0
  int Lo1

Next, we need to configure these loopbacks as the VPNv4 nexthop for the routes exported from the DATA VRF. This is simple to do on IOS-XE, using a built-in command just for this purpose, but it requires an RPL on IOS-XR.

#CSR8
vrf def DATA
 add ipv4
  bgp next-hop Lo1

#XR11
route-policy VPNV4_NEXTHOP
  if extcommunity rt matches-any (2:2) then
    set next-hop 11.11.11.12
  endif
  pass
end-policy
!
router bgp 132
 af-group AF_VPNV4 address-family vpnv4 unicast
  route-policy VPNV4_NEXTHOP out

You may need to clear BGP VPNv4 routes. You should now see that VOICE routes are learned via Lo0 as usual, and the DATA routes have a BGP nexthop of Lo1.

Finally, we must configure the TE tunnels. This is no different than before, however you need to watch out for the TE tunnel destination. The destination is not an IP address, it is a TE RID. So if you try to build the DATA TE tunnel with a destination of Lo1, the tunnel cannot be resolved. Instead, we build both TE tunnels destined to the Lo0 address, and then use a static route to steer traffic destined for the Lo1 address out the appropriate TE tunnel.

#CSR8
int tun0
 description VOICE_TO_XR11
 tunnel dest 11.11.11.11
 tunnel mpls traffic-eng autoroute announce
!
int tun1
 description DATA_TO_XR11
 tunnel dest 11.11.11.11
!
ip route 11.11.11.12 255.255.255.255 tun1

#XR11
int tunnel-te0
 description VOICE_TO_CSR8
 dest 8.8.8.8
 autoroute announce
!
int tunnel-te1
 description DATA_TO_CSR8
 dest 8.8.8.8
!
router static add ipv4 uni
 8.8.8.9/32 tunnel-te1

Note that if you accidentally build the TE tunnel to the Lo1 address, you can verify the issue multiple ways. One way is to use “show mpls traffic-eng topology path destination <Lo1 address>.” This will run PCALC on the router and give you the following error:

#CSR8
int tun10
 description DATA_TO_XR11_TEST
 ip unn lo0
 tunnel dest 11.11.11.12
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng path-option 1 dynamic

Additionally, we can debug path errors while the router tries to calculate the tunnel as well:

#CSR8
debug mpls traffic-eng path errors
debug mpls traffic-eng path lookup
!
int tun10
 shut
 no shut

Verification

Traffic between XR13 and XR14 in the VOICE VRF should take the most direct path:

Traffic between XR13 and XR14 in the DATA VRF should take the “long” path:

In summary, per-VRF TE tunnels are not a new configuration. You configure multiple TE tunnels as usual. The difference is that you set the BGP nexthop different per VRF. You then must steer the traffic to the different loopback to the appropriate TE tunnel based on a static route.

PreviousRDM w/ FRR TroubleshootingNextTactical TE Issues

Last updated 2 months ago