CCIE SPv5.1 Labs
  • Intro
    • Setup
  • Purpose
  • Video Demonstration
  • Containerlab Tips
  • Labs
    • ISIS
      • Start
      • Topology
      • Prefix Suppression
      • Hello padding
      • Overload Bit
      • LSP size
      • Default metric
      • Hello/Hold Timer
      • Mesh groups
      • Prefix Summarization
      • Default Route Preference
      • ISIS Timers
      • Log Neighbor Changes
      • Troubleshooting 1 - No routes
      • Troubleshooting 2 - Adjacency
      • IPv6 Single Topology
      • IPv6 Single Topology Challenge
      • IPv6 Multi Topology
      • IPv6 Single to Multi Topology
      • Wide Metrics Explained
      • Route Filtering
      • Backdoor Link
      • Non-Optimal Intra-Area routing
      • Multi Area
      • Authentication
      • Conditional ATT Bit
      • Troubleshooting iBGP
      • Troubleshooting TE Tunnel
    • LDP
      • Start
      • Topology
      • LDP and ECMP
      • LDP and Static Routes
      • LDP Timers
      • LDP Authentication
      • LDP Session Protection
      • LDP/IGP Sync (OSPF)
      • LDP/IGP Sync (ISIS)
      • LDP Local Allocation Filtering
      • LDP Conditional Label Advertisement
      • LDP Inbound Label Advertisement Filtering
      • LDP Label Advertisement Filtering Challenge
      • LDP Implicit Withdraw
      • LDP Transport Address Troubleshooting
      • LDP Static Labels
    • MPLS-TE
      • Start
      • Topology
      • Basic TE Tunnel w/ OSPF
      • Basic TE Tunnel w/ ISIS
      • TE Tunnel using Admin Weight
      • TE Tunnel using Link Affinity
      • TE Tunnel with Explicit-Null
      • TE Tunnel with Conditional Attributes
      • RSVP message pacing
      • Reoptimization timer
      • IGP TE Flooding Thresholds
      • CSPF Tiebreakers
      • TE Tunnel Preemption
      • TE Tunnel Soft Preemption
      • Tunneling LDP inside RSVP
      • PE to P TE Tunnel
      • Autoroute Announce Metric (XE)
      • Autoroute Announce Metric (XR)
      • Autoroute Announce Absolute Metric
      • Autoroute Announce Backup Path
      • Forwarding Adjacency
      • Forwarding Adjacency with OSPF
      • TE Tunnels with UCMP
      • Auto-Bandwidth
      • FRR Link Protection (XE, BFD)
      • FRR Link Protection (XE, RSVP Hellos)
      • FRR Node Protection (XR)
      • FRR Path Protection
      • FRR Multiple Backup Tunnels (Node Protection)
      • FRR Multiple Backup Tunnels (Link Protection)
      • FRR Multiple Backup Tunnels (Backwidth/Link Protection)
      • FRR Backup Auto-Tunnels
      • FRR Backup Auto-Tunnels with SRLG
      • Full Mesh Auto-Tunnels
      • Full Mesh Dynamic Auto-Tunnels
      • One-Hop Auto-Tunnels
      • CBTS/PBTS
      • Traditional DS-TE
      • IETF DS-TE with MAM
      • IETF DS-TE with RDM
      • RDM w/ FRR Troubleshooting
      • Per-VRF TE Tunnels
      • Tactical TE Issues
      • Multicast and MPLS-TE
    • SR
      • Start
      • Topology
      • Basic SR with ISIS
      • Basic SR with OSPF
      • SRGB Modifcation
      • SR with ExpNull
      • SR Anycast SID
      • SR Adjacency SID
      • SR LAN Adjacency SID (Walkthrough)
      • SR and RSVP-TE interaction
      • SR Basic Inter-area with ISIS
      • SR Basic Inter-area with OSPF
      • SR Basic Inter-IGP (redistribution)
      • SR Basic Inter-AS using BGP
      • SR BGP Data Center (eBGP)
      • SR BGP Data Center (iBGP)
      • LFA
      • LFA Tiebreakers (ISIS)
      • LFA Tiebreakers (OSPF)
      • Remote LFA
      • RLFA Tiebreakers?
      • TI-LFA
      • Remote LFA or TILFA?
      • TI-LFA Node Protection
      • TI-LFA SRLG Protection
      • TI-LFA Protection Priorities (ISIS)
      • TI-LFA Protection Priorities (OSPF)
      • Microloop Avoidance
      • SR/LDP Interworking
      • SR/LDP SRMS OSPF Inter-Area
      • SR/LDP Design Challenge #1
      • SR/LDP Design Challenge #2
      • Migrate LDP to SR (ISIS)
      • OAM with SR
      • SR-MPLS using IPv6
      • Basic SR-TE with AS
      • Basic SR-TE with AS and ODN
      • SR-TE with AS Primary/Secondary Paths
      • SR-TE Dynamic Policies
      • SR-TE Dynamic Policy with Margin
      • SR-TE Explicit Paths
      • SR-TE Disjoint Planes using Anycast SIDs
      • SR-TE Flex-Algo w/ Latency
      • SR-TE Flex-Algo w/ Affinity
      • SR-TE Disjoint Planes using Flex-Algo
      • SR-TE BSIDs
      • SR-TE RSVP-TE Stitching
      • SR-TE Autoroute Include
      • SR Inter-IGP using PCE
      • SR-TE PCC Features
      • SR-TE PCE Instantiated Policy
      • SR-TE PCE Redundancy
      • SR-TE PCE Redundancy w/ Sync
      • SR-TE Basic BGP EPE
      • SR-TE BGP EPE for Unified MPLS
      • SR-TE Disjoint Paths
      • SR Converged SDN Transport Challenge
      • SR OAM DPM
      • SR OAM Tools
      • Performance-Measurement (Interface Delay)
    • SRv6
      • Start
      • Topology
      • Basic SRv6
      • SRv6 uSID
      • SRv6 uSID w/ EVPN-VPWS and BGP IPv4/IPv6
      • SRv6 uSID w/ SR-TE
      • SRv6 uSID w/ SR-TE Explicit Paths
      • SRv6 uSID w/ L3 IGW
      • SRv6 uSID w/ Dual-Connected PE
      • SRv6 uSID w/ Flex Algo
      • SRv6 uSID - Scale (Pt. 1)
      • SRv6 uSID - Scale (Pt. 2)
      • SRv6 uSID - Scale (Pt. 3) (UPA Walkthrough)
      • SRv6 uSID - Scale (Pt. 4) (Flex Algo)
      • SRv6 uSID w/ TI-LFA
    • Multicast
      • Start
      • Topology
      • Basic PIM-SSM
      • PIM-SSM Static Mapping
      • Basic PIM-SM
      • PIM-SM with Anycast RP
      • PIM-SM with Auto-RP
      • PIM-SM with BSR
      • PIM-SM with BSR for IPv6
      • PIM-BiDir
      • PIM-BiDir for IPv6
      • PIM-BiDir with Phantom RP
      • PIM Security
      • PIM Boundaries with AutoRP
      • PIM Boundaries with BSR
      • PIM-SM IPv6 using Embedded RP
      • PIM SSM Range Note
      • PIM RPF Troubleshooting #1
      • PIM RPF Troubleshooting #2
      • PIM RP Troubleshooting
      • PIM Duplicate Traffic Troubleshooting
      • Using IOS-XR as a Sender/Receiver
      • PIM-SM without Receiver IGMP Joins
      • RP Discovery Methods
      • Basic Interdomain Multicast w/o MSDP
      • Basic Interdomain Multicast w/ MSDP
      • MSDP Filtering
      • MSDP Flood Reduction
      • MSDP Default Peer
      • MSDP RPF Check (IOS-XR)
      • MSDP RPF Check (IOS-XE)
      • Interdomain MBGP Policies
      • PIM Boundaries using MSDP
    • MVPN
      • Start
      • Topology
      • Profile 0
      • Profile 0 with data MDTs
      • Profile 1
      • Profile 1 w/ Redundant Roots
      • Profile 1 with data MDTs
      • Profile 6
      • Profile 7
      • Profile 3
      • Profile 3 with S-PMSI
      • Profile 11
      • Profile 11 with S-PMSI
      • Profile 11 w/ Receiver-only Sites
      • Profile 9 with S-PMSI
      • Profile 12
      • Profile 13
      • UMH (Upstream Multicast Hop) Challenge
      • Profile 13 w/ Configuration Knobs
      • Profile 13 w/ PE RP
      • Profile 12 w/ PE Anycast RP
      • Profile 14 (Partitioned MDT)
      • Profile 14 with Extranet option #1
      • Profile 14 with Extranet option #2
      • Profile 14 w/ IPv6
      • Profile 17
      • Profile 19
      • Profile 21
    • MVPN SR
      • Start
      • Topology
      • Profile 27
      • Profile 27 w/ Constraints
      • Profile 27 w/ FRR
      • Profile 28
      • Profile 28 w/ Constraints and FRR
      • Profile 28 w/ Data MDTs
      • Profile 29
    • VPWS
      • Start
      • Topology
      • Basic VPWS
      • VPWS with Tag Manipulation
      • Redundant VPWS
      • Redundant VPWS (IOS-XR)
      • VPWS with PW interfaces
      • Manual VPWS
      • VPWS with Sequencing
      • Pseudowire Logging
      • VPWS with FAT-PW
      • MS-PS (Pseudowire stitching)
      • VPWS with BGP AD
    • VPLS
      • Start
      • Topology
      • Basic VPLS with LDP
      • VPLS with LDP and BGP
      • VPLS with BGP only
      • Hub and Spoke VPLS
      • Tunnel L2 Protocols over VPLS
      • Basic H-VPLS
      • H-VPLS with BGP
      • H-VPLS with QinQ
      • H-VPLS with Redundancy
      • VPLS with Routing
      • VPLS MAC Protection
      • Basic E-TREE
      • VPLS with LDP/BGP-AD and XRv RR
      • VPLS with BGP and XRv RR
      • VPLS with Storm Control
    • EVPN
      • Start
      • Topology
      • EVPN VPWS
      • EVPN VPWS Multihomed
      • EVPN VPWS Multihomed Single-Active
      • Basic Single-homed EVPN E-LAN
      • EVPN E-LAN Service Label Allocation
      • EVPN E-LAN Ethernet Tag
      • EVPN E-LAN Multihomed
      • EVPN E-LAN on XRv
      • EVPN IRB
      • EVPN-VPWS Multihomed IOS-XR (All-Active)
      • EVPN-VPWS Multihomed IOS-XR (Port-Active)
      • EVPN-VPWS Multihomed IOS-XR (Single-Active)
      • EVPN-VPWS Multihomed IOS-XR (Non-Bundle)
      • PBB-EVPN (Informational)
    • BGP Multi-Homing (XE)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 Shadow Session
      • Lab5 Shadow RR
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + Shadow RR
      • Lab9 MPLS + RDs + UCMP
    • BGP Multi-Homing (XR)
      • Start
      • Topology
      • Lab1 ECMP
      • Lab2 UCMP
      • Lab3 Backup Path
      • Lab4 “Shadow Session”
      • Lab5 “Shadow RR”
      • Lab6 RR with Add-Path
      • Lab7 MPLS + Add Path ECMP
      • Lab8 MPLS + “Shadow RR”
      • Lab9 MPLS + RDs + UCMP
      • Lab10 MPLS + Same RD + Add-Path + UCMP
      • Lab11 MPLS + Same RD + Add-Path + Repair Path
    • BGP
      • Start
      • Conditional Advertisement
      • Aggregation and Deaggregation
      • Local AS
      • BGP QoS Policy Propagation
      • Non-Optimal eBGP Routing
      • Multihomed Enterprise Challenge
      • Provider Communities
      • Destination-Based RTBH
      • Destination-Based RTBH (Community-Based)
      • Source-Based RTBH
      • Source-Based RTBH (Community-Based)
      • Multihomed Enterprise Challenge (XRv)
      • Provider Communities (XRv)
      • DMZ Link BW Lab1
      • DMZ Link BW Lab2
      • PIC Edge in the Global Table
      • PIC Edge Troubleshooting
      • PIC Edge for VPNv4
      • AIGP
      • AIGP Translation
      • Cost-Community (iBGP)
      • Cost-Community (confed eBGP)
      • Destination-Based RTBH (VRF Provider-triggered)
      • Destination-Based RTBH (VRF CE-triggered)
      • Source-Based RTBH (VRF Provider-triggered)
      • Flowspec (Global IPv4/6PE)
      • Flowspec (VRF)
      • Flowspec (Global IPv4/6PE w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ Redirect) T-Shoot
      • Flowspec (VRF w/ Redirect)
      • Flowspec (Global IPv4/6PE w/ CE Advertisement)
    • Intra-AS L3VPN
      • Start
      • Partitioned RRs
      • Partitioned RRs with IOS-XR
      • RT Filter
      • Non-Optimal Multi-Homed Routing
      • Troubleshoot #1 (BGP)
      • Troubleshoot #2 (OSPF)
      • Troubleshoot #3 (OSPF)
      • Troubleshoot #4 (OSPF Inter-AS)
      • VRF to Global Internet Access (IOS-XE)
      • VRF to Global Internet Access (IOS-XR)
    • Inter-AS L3VPN
      • Start
      • Inter-AS Option A
      • Inter-AS Option B
      • Inter-AS Option C
      • Inter-AS Option AB (D)
      • CSC
      • CSC with Option AB (D)
      • Inter-AS Option C - iBGP LU
      • Inter-AS Option B w/ RT Rewrite
      • Inter-AS Option C w/ RT Rewrite
      • Inter-AS Option A Multi-Homed
      • Inter-AS Option B Multi-Homed
      • Inter-AS Option C Multi-Homed
    • Russo Inter-AS
      • Start
      • Topology
      • Option A L3NNI
      • Option A L2NNI
      • Option A mVPN
      • Option B L3NNI
      • Option B mVPN
      • Option C L3NNI
      • Option C L3NNI w/ L2VPN
      • Option C mVPN
    • BGP RPKI
      • Start
      • RPKI on IOS-XE (Enabling the feature)
      • RPKI on IOS-XE (Validation)
      • RPKI on IOS-XR (Enabling the feature)
      • Enable SSH in Routinator
      • RPKI on IOS-XR (Validation)
      • RPKI on IOS-XR (RPKI Routes)
      • RPKI on IOS-XR (VRF)
      • RPKI iBGP Mesh (No Signaling)
      • RPKI iBGP Mesh (iBGP Signaling)
    • NAT
      • Start
      • Egress PE NAT44
      • NAT44 within an INET VRF
      • Internet Reachability between VRFs
      • CGNAT
      • NAT64 Stateful
      • NAT64 Stateful w/ Static NAT
      • NAT64 Stateless
      • MAP-T BR
    • BFD
      • Start
      • Topology
      • OSPF Hellos
      • ISIS Hellos
      • BGP Keepalives
      • PIM Hellos
      • Basic BFD for all protocols
      • BFD Asymmetric Timers
      • BFD Templates
      • BFD Tshoot #1
      • BFD for Static Routes
      • BFD Multi-Hop
      • BFD for VPNv4 Static Routes
      • BFD for VPNv6 Static Routes
      • BFD for Pseudowires
    • QoS
      • Start
      • QoS on IOS-XE
      • Advanced QoS on IOS-XE Pt. 1
      • Advanced QoS on IOS-XE Pt. 2
      • MPLS QoS Design
      • Notes - QoS on IOS-XR
    • NSO
      • Start
      • Basic NSO Usage
      • Basic NSO Template Service
      • Advanced NSO Template Service
      • Advanced NSO Template Service #2
      • NSO Template vs. Template Service
      • NSO API using Python
      • NSO API using Python #2
      • NSO API using Python #3
      • Using a NETCONF NED
      • Python Service
      • Nano Services
    • MDT
      • Start
      • MDT Server Setup
      • Basic Dial-Out
      • Filtering Data using XPATH
      • Finding the correct YANG model
      • Finding the correct YANG model #2
      • Event-Driven MDT
      • Basic Dial-In using gNMI
      • Dial-Out with TLS
      • Dial-In with TLS
      • Dial-In with two-way TLS
    • App-Hosting
      • Start
      • Lab - iperf3 Docker Container
      • Notes - LXC Container
      • Notes - Native Applications
      • Notes - Process Scripts
    • ZTP
      • Notes - Classic ZTP
      • Notes - Secure ZTP
    • L2 Connectivity Notes
      • 802.1ad (Q-in-Q)
      • MST-AG
      • MC-LAG
      • G.8032
    • Ethernet OAM
      • Start
      • Topology
      • CFM
      • y1731
      • Notes - y1564
    • Security
      • Start
      • Notes - Security ACLs
      • Notes - Hybrid ACLs
      • Notes - MPP (IOS-XR)
      • Notes - MPP (IOS-XE)
      • Notes - CoPP (IOS-XE)
      • Notes - LPTS (IOS-XR)
      • Notes - WAN MACsec White Paper
      • Notes - WAN MACsec Config Guide
      • Notes - AAA
      • Notes - uRPF
      • Notes - VTY lines (IOS-XR)
      • Lab - uRPF
      • Lab - MPP
      • Lab - AAA (IOS-XE)
      • Lab - AAA (IOS-XR)
      • Lab - CoPP and LPTS
    • Assurance
      • Start
      • Notes - Syslog on IOS-XE
      • Notes - Syslog on IOS-XR
      • Notes - SNMP Traps
      • Syslog (IOS-XR)
      • RMON
      • Netflow (IOS-XE)
      • Netflow (IOS-XR)
Powered by GitBook
On this page
  • Answer
  • Explanation
  • Measuring Frame Loss
  • Measuring Frame Delay
  • Notes on 1DM
  • Further Reading
  1. Labs
  2. Ethernet OAM

y1731

Load cfm.init.cfg

#IOS-XR
configure
load configs/cfm.init.cfg
commit replace
y

#IOS-XE
config replace flash:cfm.init.cfg

Set Eth16 and Eth17 on the switch as follows, if not already set:


int eth16
 sw mode access
 sw acc vlan 3315
int eth17
 sw mode access
 sw acc vlan 3336

An EVPN-VPWS service is already configured between CSR5 and CSR6.

Configure CFM as follows on the CE devices (CSR5 and CSR6):

  • Use EVC mode

    • You must remove the IP addresses on Gi1 and create an EFP with default encap

    • Associate this with BD 4100 and move the IP address to this bridge-domain

  • Use domain CUSTOMER with level 7

  • Use a service called “service1” and set the direction to down

  • Set the CSR5 MPID to 5, and CSR6 MPID to 6

Configure y1731 as follows:

  • Configure two-way delay from CSR5 using an interval of 50msec

  • Configure loss measurements using synthetic packets on both CSR5 and CSR6 using an interval of 50msec

Answer

## CFM Config
#CSR5
ethernet cfm ieee
ethernet cfm global
ethernet cfm domain CUSTOMER level 7
 service service1 evc EVC1 direction down
  continuity-check
exit
exit
int gi2
 no ip address
 service instance 1 ethernet EVC1
  encapsulation default
  cfm mep domain CUSTOMER mpid 5
  bridge-domain 4100
!
int bdi4100
 no shut
 ip add 10.0.0.5 255.255.255.0
  
#CSR6
ethernet cfm ieee
ethernet cfm global
ethernet cfm domain CUSTOMER level 7
 service service1 evc EVC1 direction down
  continuity-check
exit
exit
int gi2
 no ip address
 service instance 1 ethernet EVC1
  encapsulation default
  cfm mep domain CUSTOMER mpid 6
  bridge-domain 4100
!
int bdi4100
 no shut
 ip add 10.0.0.6 255.255.255.0
 
 
 
##y1731 CONFIG
#CSR5
ip sla 100
 ethernet y1731 delay DMM domain CUSTOMER evc EVC1 mpid 6 cos 0 source mpid 5
  frame interval 50
ip sla schedule 100 life forever start-time now
!
ip sla 200
 ethernet y1731 loss SLM domain CUSTOMER evc EVC1 mpid 6 cos 0 source mpid 5
  frame interval 50
ip sla schedule 200 life forever start-time now

#CSR6
ip sla 200
 ethernet y1731 loss SLM domain CUSTOMER evc EVC1 mpid 5 cos 0 source mpid 6
  frame interval 50
ip sla schedule 200 life forever start-time now

Explanation

ITU-T Y.1731 was defined to be able to do performance monitoring on layer 2 Ethernet services. Y.1731 uses CFM to run delay and loss probes that determine loss and delay statistics over time. Y.1731 defines the CFM frame formats for these probes.

To begin, we must setup CFM. Both CEs are placed in the same domain, but this time we use EVC mode instead of port mode. To be able to use Y.1731 operations, we must either use EVC or VLAN mode.

We must remove the IP address from Gi2 and associate the EVC with a service instance.

ethernet cfm ieee
ethernet cfm global
ethernet cfm domain CUSTOMER level 7
 service service1 evc EVC1 direction down
  continuity-check
!
int gi2
 no ip address
 service instance 1 ethernet EVC1
  encapsulation default
  cfm mep domain CUSTOMER mpid 5

Interestingly, the CEs do not see each other as remote maintenance-points yet until we add a bridge-domain. When using an EVC, the bridge domain number must be above 4096 so that it is not tied to a VLAN.

int gi2
 service instance 1 ethernet EVC1
  bridge-domain 4100
!
int bdi4100
 no shut
 ip add 10.0.0.5 255.255.255.0

Now the CEs have discovered each other via CFM CCMs (continunity check messages).

Measuring Frame Loss

We configure Y.1731 using the IP SLA CLI. When measuring frame loss, we can measure using LMMs (loss measurement messages) or SLMs (synthetic loss messages).

ip sla 1
 ethernet y1731 loss LMM|SLM

This is a one-way operation, and the remote maintenance-point will automatically respond to the probe as a sort of “ICMP reply.” A reply means no frame loss, and a missing reply means the frame was lost.

The difference between SLMs and LMM is that SLMs supposedly synthesize data traffic. However, in the pcaps, I don’t see a major difference between them. The idea is that LMMs would be used for user data, and SLMs create a separate measurement probe by using synthesized data. But in the pcaps, LMMs seem to use their own frames as well.

This is a LMM (loss measurement message) and LMR (loss measurement reply):

This is a SLM and SLR:

We are asked to configure SLM using a frame interval of 50msec. This means that a probe is sent every 50msec. To create the IP SLA operation, you define the CFM domain, the MPIDs and the CoS value you’d like to use. Note that since we are using an untagged EFP, we must use a CoS of zero (0).

#CSR5
ip sla 200
 ethernet y1731 loss SLM domain CUSTOMER evc EVC1 mpid 6 cos 0 source mpid 5
  frame interval 50
ip sla schedule 200 life forever start-time now

Using the command show ip sla statistics 200 we should see that measurements have been initiated and completed, which indicates that the Y.1731 loss measurement test is working:

Using the detail keyword we can see the loss rate:

If we flap CSR3’s Gi2, we can see some loss:

Measuring Frame Delay

Y.1731 can measure one-way delay or two-way delay. One-way delay requires clock synchronization, while two-way delay does not. A one-way delay operation is configured using 1DM and a two-way delay operation is configured using DMM.

ip sla 100
 ethernet y1731 delay 1DM|DMM|receive

If you using 1DM, you need to use receive on the other end. This is not the case for DMM (two-way delay). The other end automatically timestamps the DMR (delay measurement reply) when using two-way delay. You do not need any sort of “IP sla responder” configuration.

ip sla 100
 ethernet y1731 delay receive

In this lab we configure a single two-way delay operation on CSR5 and specify the interval as 50msec.

#CSR5
ip sla 100
 ethernet y1731 delay DMM domain CUSTOMER evc EVC1 mpid 6 cos 0 source mpid 5
  frame interval 50
ip sla schedule 100 life forever start-time now

The probes use DMMs (delay measurement messages) and DMRs (delay measurement replies):

This does not require clock sync, because the originating node simply subtracts like-values from each other. The node does (T4 - T1) to find the round trip time, and then subtracts (T3 - T2) from that, which is the processing time on the remote node.

Just like the y1731 loss test, we should see measurements initiated and completed:

Using the details keyword shows us the min/avg/max delay we are experiencing on the layer 2 service. In this lab, the average two-way round-trip delay is 55msec.

Notes on 1DM

When performing y1731 one-way delay measurements, one end sends the probes, and one end receives them and calculates the delay. The receiving end does not report the delay values to the sending end.

#CSR5
ip sla 99
 ethernet y1731 delay 1DM domain CUSTOMER evc EVC1 mpid 6 cos 0 source mpid 5
ip sla schedule 99 life forever start-time now

#CSR6
ip sla 99
 ethernet y1731 delay receive 1DM domain CUSTOMER evc EVC1 cos 0 mpid 6
ip sla schedule 99 life forever

Above, CSR5 sends the probes, and CSR6 receives them.

On CSR5, it looks like the operation isn’t working:

However, it is actually working. We can only see the stats on CSR6. CSR6 takes the TxTimestampf sent from CSR5, and subtracts this from the RxTimestampf, which is when CSR6 received the frame. (This is T2-T1. T3 and T4 are unused in one-way delay measurements).

Above, there are no actual measurements. Perhaps because the clocks are not synced.

Further Reading

PreviousCFMNextNotes - y1564

Last updated 1 month ago

https://www.cisco.com/c/en/us/td/docs/routers/7600/ios/15S/configuration/guide/7600_15_0s_book/y-1731PM.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/cether/configuration/xe-16/ce-xe-16-book/sla-mether3-y1731.html#GUID-01D95E50-3BC2-4728-BAF0-5A285E20A60F
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/oam-service-overview.html
https://www.youtube.com/watch?v=vfEI4H6xz1c